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Abstract

In Part I, we consider the four structures (Z; SFZ), (Z;<,SFZ), (Q; SFQ), and (Q;<,SFQ) where Z is the

additive group of integers, SFZ is the set of a ∈ Z such that vp(a) < 2 for every prime p and corresponding

p-adic valuation vp, Q and SFQ are defined likewise for rational numbers, and < denotes the natural ordering

on each of these domains. We prove that the second structure is model-theoretically wild while the other

three structures are model-theoretically tame. Moreover, all these results can be seen as examples where

number-theoretic randomness yields model-theoretic consequences.

Part II gives an account of the Pila-Wilkie counting theorem and some of its extensions and generalizations.

We use semialgebraic cell decomposition to simplify part of the original proof. We also include complete

treatments of a result due to Pila and Bombieri and of the o-minimal Yomdin-Gromov theorem that are used

in this proof. For the latter we follow Binyamini and Novikov.

Part III develops an extension theory for analytic valuation rings in order to establish Ax-Kochen-Ersov type

results for these structures. New is that we can add in salient cases lifts of the residue field and the value

group and show that the induced structure on the lifted residue field is just its field structure, and on the

lifted value group is just its ordered abelian group structure. This restores an analogy with the non-analytic

AKE-setting that was missing in earlier treatments of analytic AKE-theory.
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CHAPTER 1

Introduction

This thesis comprises three parts corresponding to three projects. These projects all involve model theory to

study issues around definability in various mathematical structures, but are otherwise unrelated. The first

part is joint work with Chieu-Minh Tran and was published as [10]; this part is not represented in the title of

the thesis. The second and third parts are joint work with Lou van den Dries. The former was published as

[9] and the latter will be expanded to a paper to be submitted for publication.

This chapter gives a broad overview of my doctoral research, and each part of the thesis will contain a

detailed introduction. The three sections below correspond to the parts of the thesis.

1.1 Groups Z and Q with square-freeness predicates

Throughout this thesis, n ∈ N. In first-order model theory, we study the sets definable in a structure. In brief,

a set is said to be definable in a structure, if it is given as an n-ary relation on the domain of the structure,

and the relation is described by some formula in the first-order language of the structure. I will now give

some examples for the jargon in italics, and leave it to the reader to arrive/look at precise formulations.

(Z; 0, 1,+, ·) is an example of a structure, its domain is Z, and the language associated with the structure

is {0, 1,+, ·}, the language of rings. For example,
(
xy + 1 = 0

)
is a formula in the language, so is(

∀y x7y2 + x6y4 + 1 = 0
)
, and

{x ∈ Z : for all y, x7y2 + x6y4 + 1 = 0 and xy + 1 ̸= 0}

is an example of a set definable in the structure (Z; 0, 1,+, ·).
So in particular with the structure (Z; 0, 1,+, ·), we can ask if certain diophantine equations have solutions

or not. In view of Matiyasevich’s famous resolution of Hilbert’s tenth problem [46], the class of definable sets

of (Z; 0, 1,+, ·) have a deep anarchic quality to them. The full class of sets definable in (Z; 0, 1,+, ·) is much

broader than just sets of diophantine solutions of polynomials, and Gödel’s incompleteness theorem is an

undecidability result for this bigger class. For reasons not unrelated to the two blockbuster results above, the

structure (Z; 0, 1,+, ·) is considered wild from other model-theoretic classification points of view as well.

With the integers being so obviously central to mathematics, structures with domain Z, in particular

expansions of the the group of integers, i.e. (Z; 0, 1,+), are an area of active and vigorous interest in model

theory. Our main result in Part I is about the model-theoretic properties of (Z; 0, 1,+,SFZ), with SFZ being

the set of square-free integers.
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Theorem 1.1 (Theorem 2.1). The theory of (Z; 0, 1,+,−,SFZ) is model complete, decidable, unstable and

supersimple of U-rank 1.

Our result follows Kaplan and Shelah’s work [41], where they expand the group of integers by a predicate for

primes, and obtain the exact analogue of the above theorem for their structure; but under the assumption of

Dickson’s conjecture. We prove the analogue of Dickson’s conjecture for the square-free integers required

for our purposes; a purely analytic number theoretic fact. (Z; 0, 1,+,−,SFZ) is actually a rare example of a

structure with domain Z whose theory is unconditionally known to be tame but not NIP.

We also consider (Z; 0, 1,+,−, <,SFZ), the expansion of the structure above with a binary relation for the

usual ordering on the integers. The structure can define multiplication, and is hence wild by our discussion

above on (Z; 0, 1,+, ·). This result is another analogue of a theorem for the corresponding structure with a

predicate for primes [7]; this earlier result is again under the assumption of Dickson’s conjecture.

Theorem 1.2 (Theorem 2.2). The theory of (Z; 0, 1,+,−, <,SFZ) interprets arithmetic, and hence is in

particular undecidable.

We also place two corresponding structures with domain the rational numbers on the tameness/decidability

spectrum, see Theorems 2.3, 2.4.

1.2 O-minimality and the Pila-Wilkie Theorem

Going back to the language of rings, in contrast to the structure with domain Z, the structure (R; 0, 1,+, ·) is
model-theoretically tame, and its theory is also decidable; this is all based on classical work of Tarski [60].

Tarski’s work, put into the relevant model-theoretic framework, also leads to an elegant reproof of Hilbert’s

17th problem, see [56]. The structure (R; 0, 1,+, ·), which is customarily referred to as the real field, is a

principal example of what is called an o-minimal structure.

O-minimality as a subject within model theory started, in spirit, through van den Dries’ work [25] on a

problem of Tarski’s from [60], was formally defined in [55], and has grown into a field of intense investigation

and interest. The theory has had some spectacular applications to diophantine geometry and Hodge theory,

which stem from the fact that the framework allows one to work with much larger classes of sets than in

algebraic geometry, while keeping many of the familiar finiteness properties of real algebraic sets. Typically,

such a class of sets contains all compact subanalytic sets, as well as the graph of the exponential function.

The Pila-Wilkie counting theorem [53] and variations have been cornerstones of strategies employed to

attack several Zilber-Pink problems, a prime example being Pila’s proof of the André-Oort conjecture for

products of modular curves [52], which followed [54]. Moreover, an o-minimal Chow’s theorem [49] was

crucially involved in the proof Griffith’s conjecture about images of period mappings [6].

In a nutshell, the Pila-Wilkie theorem gives a subpolynomial upper bound in terms of their heights, on

the number of rational points inside the transcendental part of a set definable in an o-minimal expansion of

the real field. Part II presents a complete exposition of the Pila-Wilkie theorem, and some of its extensions

and generalizations. In fact, we exploit cell decomposition more thoroughly to simplify the deduction from

the main ingredients of the original proof. The technically most demanding ingredient is an o-minimal

Yomdin-Gromov theorem, and we include a simpler treatment of this result following Binyamini and Novikov

[15], and add appendices on o-minimality and model theory to make our account self-contained.

The overarching principle with Pila-Wilkie type results is that transcendental sets contain few rational

points. We now make these things precise so that we can state the theorem. For a measure on the density of
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rational points, we define the multiplicative height function H : Q→ R by H(ab ) := max(|a|, |b|) ∈ N⩾1 for

coprime a, b ∈ Z, b ̸= 0. Let n ⩾ 1; then for a = (a1, . . . , an) ∈ Qn, we set

H(a) := max{H(ai) : 1 ⩽ i ⩽ n} ∈ N⩾1.

ForX ⊆ Rn setX(Q) = X∩Qn, and for T ranging over real numbers⩾ 1, X(Q, T ) := {a ∈ X(Q) : H(a) ⩽ T}
is the (finite) set of rational points of X of height ⩽ T , and N(X,T ) := #X(Q, T ) ∈ N.

We aim for sub-polynomial asymptotic upper bounds on N(X,T ), under certain geometric conditions on

X. Such X ⊆ Rn may contain semialgebraic subsets of positive dimension even if X itself is not semialgebraic,

and these semialgebraic subsets can contain cT δ rational points of height at most T , for some c, δ > 0 and

all T ⩾ 1. To address this issue, we remove the algebraic part of X, denoted by Xalg, to be the union of

the connected infinite semialgebraic subsets of X. Set Xtr := X \Xalg; we can now state the Pila-Wilkie

counting theorem:

Theorem 1.3 (Theorem 5.1). Let X ⊆ Rn be a set definable in an o-minimal expansion of the real field, and

let ε > 0. There is a constant C(X, ε) ∈ R>0 such that

N(Xtr, T ) ⩽ C(X, ε)T ε.

As in the original, our proof too motivates more general family version(s), Theorems 5.7, 5.8. Moreover we

apply our strategy to recover an extension, Theorem 8.4, and a couple of generalizations, Theorems 8.5, 8.9

which first appear in [51].

1.3 An analytic AKE program

The following result is an early famous example of using model theory in (p-adic) number theory, due to Ax

and Kochen [3, 4, 5].

Theorem 1.4. Given any natural number d, there is a natural number N such that for all prime numbers

p > N , every homogeneous polynomial of degree d over the p-adic numbers in at least d2 + 1 variables has a

non-trivial zero.

The key underlying result in [3, 4, 5] on henselian valued fields of equicharacteristic 0 was also independently

proved by Ersov [33, 34, 35, 36] and gave rise to what we now call AKE-theory, extending and refining the

original work in many ways. The AKE principle, stated loosely, is that the model theory of a henselian valued

field is completely determined by the model theory of its residue field and value group.

In an extension due to Denef and van den Dries [23, 27] suitable henselian valued fields are equipped with

extra first-order primitives given by restricted analytic functions, and this led to answering a question by Serre

on p-adic analytic varieties. The key argument in [23, 27] is a direct reduction to the original AKE-setting by

means of a piecewise uniform Weierstrass preparation result applied to the relevant restricted power series.

It has a drawback: The original AKE-proof by model theory and valuation theory allows one to show

that for a lifting of the residue field and of the value group, (in the equicharacteristic 0 case) the induced

structure on these lifts is just given by what is definable in the lift as a pure field, respectively, as a pure

ordered abelian group. The direct reductions in [23, 27], however, do not give the corresponding induced

structure theorem in the setting with restricted analytic functions.

3



In Part III we develop an extension theory for analytic valuation rings, in parallel with ordinary valuation

theory, so that model theory is used to recover such an induced structure result. Weierstrass preparation is

still crucial, but now serves only to develop the extension theory. We obtain an analytic AKE-type equivalence

result, Theorem 12.14, and end this part of the thesis by using our technology to recover [12, Proposition 2]

as an immediate consequence. The authors of [12] use it in connection with a counterexample to a possible

Pila-Wilkie type result for definable sets of C((t)) with restricted analytic functions.
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Part I

The groups Z and Q with predicates for being

square-free
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CHAPTER 2

Motivations and the number theory

In this part of the thesis we explore the randomness of the square-free integers and evaluate whether four

first-order structures are tame or not.

In Chapter 2 we state our results for the four structures, and isolate the technology around the random

behaviour of the square-free integers of interest to us. We employ this number theoretic phenomenon to

deduce model theoretic consequences for each of the structures in Chapter 3.

2.1 Our theorems

In [41], Kaplan and Shelah showed under the assumption of Dickson’s conjecture that if Z is the additive

group of integers implicitly assumed to contain the element 1 as a distinguished constant and the map a 7→ −a
as a distinguished function, and if Pr is the set of a ∈ Z such that either a or −a is prime, then the theory

of (Z; Pr) is model complete, decidable, and super-simple of U-rank 1. From our current point of view, the

above result can be seen as an example of a more general phenomenon where we can often capture aspects

of randomness inside a structure using first-order logic and deduce in consequence several model-theoretic

properties of that structure. In (Z; Pr), the conjectural randomness is that of the set of primes with respect

to addition. Dickson’s conjecture is useful here as it reflects this randomness in a fashion which can be made

first-order. The second author’s work in [61] provides another example with similar themes.

Our viewpoint in particular predicts that there are analogues of Kaplan and Shelah’s results with Pr replaced

by other random subsets of Z. We confirm the above prediction in this part of the thesis without the

assumption of any conjecture when Pr is replaced with the set

SFZ = {a ∈ Z : for all p primes, vp(a) < 2}

where vp is the p-adic valuation associated to the prime p. We have that Z is a structure in the language L of

additive groups augmented by a constant symbol for 1 and a function symbol for a 7→ −a. Then (Z; SFZ) is a

structure in the language Lu extending L by a unary predicate symbol for SFZ (as indicated by the additional

subscript “u”). We will introduce a first-order notion of genericity which captures the partial randomness in

the interaction between SFZ and the additive structure on Z. Using a similar idea as in [41], we obtain:

Theorem 2.1. The theory of (Z; SFZ) is model complete, decidable, supersimple of U-rank 1, and is k-

independent for all k ∈ N⩾1.

The above theorem gives us without assuming any conjecture the first natural example of a simple unstable

expansion of Z. From the same notion of genericity, we deduce entirely different consequences for the structure

6



(Z;<,SFZ) in the language Lou extending Lu by a binary predicate symbol for the natural ordering < (as

indicated by the additional subscript “o”):

Theorem 2.2. The theory of (Z;<,SFZ) interprets arithmetic.

The proof here is an adaption of the strategy used in [7] to show that the theory of (N; +, <,Pr) with Pr the

set of primes interprets arithmetic. The above two theorems are in stark contrast with one another in view

of the fact that (Z;<) is a minimal proper expansion of Z; indeed, it is proven in [22] that adding any new

definable set from (Z;<) to Z results in defining <. On the other hand, it is shown in [24] that there is no

strong expansion of the theory of Presburger arithmetic, so Theorem 2.2 is perhaps not entirely unexpected.

It is also natural to consider the structures (Q; SFQ) and (Q;<,SFQ) where Q is the additive group of rational

numbers, also implicitly assumed to contain 1 as a distinguished constant and a 7→ −a as a distinguished

function,

SFQ = {a ∈ Q : vp(a) < 2 for all primes p},

and the relation < on Q is the natural ordering. The reader might wonder why chose the above SFQ instead

of SFZ or ASFQ = {a ∈ Q : |vp(a)| < 2 for all primes p}. From Lemma 2.6 in the next section, we get

SFQ + SFQ = Q, SFZ + SFZ = Z, and ASFQ +ASFQ = {a : vp(a) > −2 for all primes p}. Hence, equipping
Q and (Q;<) with either SFZ or ASFQ will result in structures expanding a infinite-index pair of infinite

abelian groups with a unary predicate on the smaller group, and therefore, having rather different flavors

from (Z; SFZ) and (Z;<,SFZ).

Viewing (Q; SFQ) and (Q;<,SFQ) in the obvious way as an Lu-structure and an Lou-structure, the main new

technical aspect is in showing that these two structures satisfy suitable notions of genericity and leveraging

on them to prove:

Theorem 2.3. The theory of (Q; SFQ) is model complete, decidable, simple but not supersimple, and is

k-independent for all k ∈ N⩾1.

From above, (Q; SFQ) is “less tame” than (Z; SFZ). The reader might therefore expect that (Q;<,SFQ) is

wild. However, this is not the case:

Theorem 2.4. The theory (Q;<,SFQ) is model complete, decidable, is NTP2 but is not strong, and is

k-independent for all k ∈ N⩾1.

Notation and conventions. Let h, k and l range over the set of integers and let m, n, and n′ range

over the set of natural numbers (which include zero). We let p range over the set of prime numbers, and

denote by vp the p-adic valuation on Q. Let x be a single variable, y a tuple of variables of unspecified length,

z the tuple (z1, . . . , zn) of variables, and z
′ the tuple (z′1, . . . , z

′
n′) of variables. For an n-tuple a of elements

from a certain set, we let ai denote the i-th component of a for i ∈ {1, . . . , n}. Suppose G is an additive

abelian group. We equip Gm with a group structure by setting + on Gm to be the coordinate-wise addition.

Viewing G and Gm as Z-module, we define ka with a ∈ G and kb with b ∈ Gm accordingly. Suppose, G

is moreover an L-structure with 1G the distinguished constant. We write k for k1G. For A ⊆ G, we let

L(A) denote the language extending L by adding constant symbols for elements of A and view G as an L(A)

structure in the obvious way.

7



2.2 Genericity of the examples

In this section, we define the appropriate notions of genericity for the structures under consideration.

We study the structure (Z; SFZ) indirectly by looking at its definable expansion to a richer language. For

given p and l, set

UZ
p,l = {a ∈ Z : vp(a) ⩾ l}.

Let U Z = (UZ
p,l). The definition for l ⩽ 0 is not too useful as UZ

p,l = Z in this case. However, we still keep

this for the sake of uniformity as we treat (Q; SFQ) later. For m > 0, set

PZ
m = {a ∈ Z : vp(a) < 2 + vp(m) for all p}.

In particular, PZ
1 = SFZ. Let PZ = (PZ

m)m>0. We have that (Z,U Z,PZ) is a structure in the language L∗
u

extending Lu by families of unary predicate symbols for U Z and (PZ
m)m>1. Note that

UZ
p,l = Z for l ⩽ 0, UZ

p,l = plZ for l > 0, and PZ
m =

⋃
d|m

dSFZ for m > 0.

Hence, UZ
p,l and P

Z
m are definable in (Z,SFZ), and so a subset of Z is definable in (Z;U Z,PZ) if and only if

it is definable in (Z,SFZ) .

Let (G;PG,U G) be an L∗
u-structure. Then U G is a family indexed by pairs (p, l), and PG is a family

indexed by m. For p, l, and m, define UGp,l ⊆ G to be the member of U G with index (p, l) and PGm ⊆ G to

be the member of the family PG with index m. In particular, we have U G = (UGp,l) and P
G = (PGm)m>0.

Clearly, this generalizes the previous definition for Z.

We isolate the basic first-order properties of (Z;U Z,PZ). Let Sf∗Z be a recursive set of L∗
u-sentences such that

an L∗
u-structure (G;U G,PG) is a model of Sf∗Z if and only if (G;U G,PG) satisfies the following properties:

(Z1) (G; +,−, 0, 1) is elementarily equivalent to (Z; +,−, 0, 1);

(Z2) UGp,l = G for l ⩽ 0, and UGp,l = plG for l > 0;

(Z3) 1 is in PG1 ;

(Z4) for any given p, we have that pa ∈ PG1 if and only if a ∈ PG1 and a /∈ UGp,1;

(Z5) PGm =
⋃
d|m dP

G
1 for all m > 0.

The fact that we could choose Sf∗Z to be recursive follows from the well-known decidability of Z. Clearly,

(Z;U Z,PZ) is a model of Sf∗Z. Several properties which hold in (Z;U Z,PZ) also hold in an arbitrary model

of Sf∗Z:

Lemma 2.5. Let (G;U G,PG) be a model of Sf∗Z. Then we have the following:

(i) (G;U G) is elementarily equivalent to (Z;U Z);

(ii) for all k, p, l, and m > 0, we have that

k ∈ UGp,l if and only if k ∈ UZ
p,l and k ∈ PGm if and only if k ∈ PZ

m;
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(iii) for all h ̸= 0, p, and l, we have that ha ∈ UGp,l if and only if a ∈ UGp,l−vp(h);

(iv) if a ∈ G is in UGp,2+vp(m) for some p, then a /∈ PGm ;

(v) for all h ̸= 0 and m > 0, ha ∈ PGm if and only if we have

a ∈ PGm and a /∈ UGp,2+vp(m)−vp(h) for all p which divides h;

(vi) for all h > 0 and m > 0, a ∈ PGm if and only if ha ∈ PGmh.

Proof. Fix a model (G;U G,PG) of Sf∗Z. It follows from (Z2) that the same first-order formula defines both

UGp,l in G and UZ
p,l in Z. Then using (Z1), we get (i). The first assertion of (ii) is immediate from (i). Using

this, (Z3), and (Z4), we get the second assertion of (ii) for the case m = 1. For m ≠ 1, we reduce to the case

m = 1 using property (Z5). Statement (iii) is an immediate consequence of (i). We only prove below the

cases m = 1 of (iv − vi) as the remaining cases of the corresponding statements can be reduced to these using

(Z5). Statement (iv) is immediate for the case m = 1 using (Z2) and (Z4). The case m = 1 of (v) is precisely

the statement of (Z4) when h is prime, and then the proof proceeds by induction. For the case m = 1 of (vi),

(→) follows from (Z5), and (←) follows through a combination of Z5, (v) and induction on the number of

prime divisors of h.

We next consider the structures (Q; SFQ) and (Q;<,SFQ). For given p, l, and m > 0, in the same fashion as

above, we set

UQ
p,l = {a ∈ Q : vp(a) ⩾ l} and PQ

m = {a ∈ Q : vp(a) < 2 + vp(m) for all p},

and let

U Q = (UQ
p,l) and PQ = (PQ

m)m>0.

Then (Q;U Q,PQ) is a structure in the language L∗
u. Clearly, every subset of Qn definable in (Q; SFQ) is

also definable in (Q;U Q,PQ). A similar statement holds for (Q;<,SFQ) and (Q;<,U Q,PQ). We will show

that the reverse implications are also true.

The next lemma backs up the discussion on SFQ and ASFQ preceding Theorem 2.3 in the introduction.

Lemma 2.6. SFZ + SFZ = Z, SFQ + SFQ = Q, and ASFQ +ASFQ = {a : vp(a) > −2 for all p}.

Proof. We first prove that any integer k is a sum of two elements from SFZ. As SFZ = −SFZ and the

cases where k = 0 or k = 1 are immediate, we assume that k > 1. It follows from [57] that the number of

square-free positive integers less than k is at least 53k
88 . Since 53

88 >
1
2 , this implies k can be written as a sum

of two positive square-free integers which gives us SFZ + SFZ = Z. Using this, the other two equalities follow

immediately.

Lemma 2.7. For all p and l, UQ
p,l is existentially 0-definable in (Q; SFQ).

Proof. As UQ
p,l+n = pnUQ

p,l for all l and n, it suffices to show the statement for l = 0. Fix a prime p. We have

for all a ∈ SFQ that

vp(a) ⩾ 0 if and only if p2a /∈ SFQ.

9



Using Lemma 2.6, for all a ∈ Q, we have that vp(a) ⩾ 0 if and only if there are a1, a2 ∈ Q such that

(
a1 ∈ SFQ ∧ vp(a1) ⩾ 0

)
∧
(
a2 ∈ SFQ ∧ vp(a2) ⩾ 0

)
and a = a1 + a2.

Hence, the set UQ
p,0 = {a ∈ Q : vp(a) ⩾ 0} is existentially definable in (Q; SFQ). The desired conclusion

follows.

It is also easy to see that for all m, PQ
m = mSFQ for all m > 0, and so PQ

m is existentially 0-definable in

(Q; SFQ). Combining with Lemma 2.7, we get:

Proposition 2.8. Every subset of Qn definable in (Q;U Q,PQ) is also definable in (Q; SFQ). The corre-

sponding statement for (Q;<,U Q,PQ) and (Q;<,SFQ) holds.

In view of the first part of Proposition 2.8, we can analyze (Q; SFQ) via (Q;U Q,PQ) in the same way we

analyze (Z; SFZ) via (Z;U Z,PZ). Let Sf∗Q be a recursive set of L∗
u-sentences such that an L∗

u-structure

(G;U G,PG) is a model of Sf∗Q if and only if (G;U G,PG) satisfies the following properties:

(Q1) (G; +,−, 0, 1) is elementarily equivalent to (Q; +,−, 0, 1);

(Q2) for any given p, UGp,0 is an n-divisible subgroup of G for all n coprime with p;

(Q3) 1 ∈ UGp,0 and 1 /∈ UGp,1;

(Q4) for any given p, p−lUGp,l = UGp,0 if l < 0 and Up,l = plUp,0 if l > 0;

(Q5) UGp,0/U
G
p,1 is isomorphic as a group to Z/pZ;

(Q6) 1 ∈ PG1 ;

(Q7) for any given p, we have that pa ∈ PG1 if and only if a ∈ PG1 and a /∈ UGp,1;

(Q8) PGm = mPG1 for m > 0;

The fact that we could choose Sf∗Q to be recursive follows from the well-known decidability of Q. Obviously,

(Q;U Q,PQ) is a model of Sf∗Q. Several properties which hold in (Q;U Q,PQ) also hold in an arbitrary

model of Sf∗Q:

Lemma 2.9. Let (G;U G,PG) be a model of Sf∗Q. Then we have the following:

(i) For all p and all l, l′ ∈ Z with l ⩽ l′, we have UGp,l is a subgroup of G, UGp,l′ ⊆ UGp,l. Further, we can

interpret UGp,l/U
G
p,l′ as an L-structure with 1 being pl + UGp,l′ , and

UGp,l/U
G
p,l′
∼=L Z/(pl

′−lZ);

(ii) for all h, k ̸= 0, p, l, and m > 0, we have that

h

k
∈ UGp,l if and only if

h

k
∈ UQ

p,l and
h

k
∈ PGm if and only if

h

k
∈ PQ

m

where hk−1 is the obvious element in Q and in G;

(iii) the replica of (iii− vi) of Lemma 2.5 holds.
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Proof. Fix a model (G;U G,PG) of Sf∗Q. From (Q2) we have that UGp,0 is a subgroup of G for all p. It follows

from (Q4) that UGp,l′ ⊆ UGp,l are subgroups of G for all p and l ⩽ l′. With UGp,l/U
G
p,l′ being interpreted as an

L-structure with 1 being pl +UGp,l′ , we get an L-embedding of Z/(pl′−lZ) into UGp,l/UGp,l′ using (Q3) and (Q4).

Further, we see that |UGp,l/UGp,l′ | = p(l
′−l) using (Q2)-(Q5) and induction on l′ − l together with the third

isomorphism theorem; and so the aforementioned embedding must be an isomorphism, finishing the proof for

(i). The first assertion of (ii) follows easily from (Q2)-Q(4). The second assertion for the case m = 1 follows

from the first assertion, (Q6), and (Q7). Finally, the case with m ≠ 1 follows from the case m = 1 using (Q8).

The proof for the replica of (iii) from Lemma 2.5 is a consequence of (i) and (Q4). The proofs for replicas of

(iv − vi) from Lemma 2.5 are similar to the proofs for (iv − vi) of Lemma 2.5.

As the reader may expect by now, we will study (Q;<,SFQ) via (Q;<,U Q,PQ). Let L∗
ou be Lou ∪ L∗

u.

Then (Q;<,U Q,PQ) can be construed as an L∗
ou-structure in the obvious way. Let OSf∗Q be a recursive set

of L∗
ou-sentences such that an L∗

ou-structure (G;U G,PG) is a model of OSf∗Q if and only if (G;U G,PG)

satisfies the following properties:

1. (G;<) is elementarily equivalent to (Q;<);

2. (G;U G,PG) is a model of Sf∗Q.

As Th(Q;<) is decidable, we could choose OSf∗Q to be recursive.

Returning to the theory Sf∗Z, we see that it does not fully capture all the first-order properties of (Z,U Z,PZ).

For instance, we will show later in Corollary 2.16 that for all c ∈ Z, there is a ∈ Z such that

a+ c ∈ SFZ and a+ c+ 1 ∈ SFZ,

while the interested reader can construct models of Sf∗Z where the corresponding statement is not true.

Likewise, the theories Sf∗Q and OSf∗Q do not fully capture all the first-order properties of (Q;U Q,PQ) and

(Q;<,U Q,PQ).

To give a precise formulation of the missing first-order properties of (Z,U Z,PZ), (Q;U Q,PQ), and (Q;<

U Q,PQ), we need more terminologies. Let t(z) be an L∗
u-term (or equivalently an L∗

ou-term) with variables

in z. An L∗
u-formula (or an L∗

ou-formula) which is a boolean combination of formulas having the form t(z) = 0

where we allow t to vary is called an equational condition. Similarly, an L∗
ou-formula which is a boolean

combination of formulas having the form t(z) < 0 where t is allowed to vary is called an order-condition. For

any given p, l define t(z) ∈ Up,l to be the obvious formula in L∗
u(z) which defines in an arbitrary L∗

u-structure

(G;U G,PG) the set

{c ∈ Gn : tG(c) ∈ UGp,l}.

Define the quantifier-free formulas t(z) /∈ Up,l, t(z) ∈ Pm, and t(z) /∈ Pm in L∗
u(z) for p, l, and for m > 0

likewise. For each prime p, an L∗
u-formula (or an L∗

ou-formula) which is a boolean combination of formulas of

the form t(z) /∈ Up,l where t and l are allowed to vary is called a p-condition. We call a p-condition as in

the previous statement trivial if the boolean combination is the empty conjunction.

A parameter choice of variable type (x, z, z′) is a triple (k,m,Θ) such that k is in Z \ {0}, m is in N⩾1,

and Θ =
(
θp(x, z, z

′)
)
where θp(x, z, z

′) is a p-condition for each prime p and is trivial for all but finitely
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many p. We say that an L∗
u-formula ψ(x, z, z′) is special if it has the form

∧
p

θp(x, z, z
′) ∧

n∧
i=1

(kx+ zi ∈ Pm) ∧
n′∧
i′=1

(kx+ z′i /∈ Pm)

where k,m and θp(x, z, z
′) are taken from a parameter choice of variable type (x, z, z′). Every special formula

corresponds to a unique parameter choice and vice versa. Special formulas are special enough that we have

a “local to global” phenomenon in the structures of interest but general enough to represent quantifier free

formulas. We will explain the former point in the remaining part of the section and make the latter point

precise with Theorem 3.1.

Let ψ(x, z, z′) be a special formula with parameter choice (k,m,Θ) and θp(x, z, z
′) is the p-condition in Θ for

each p. We define the associated equational condition of φ(x, z, z′) to be the formula

n∧
i=1

n′∧
i′=1

(zi ̸= z′i′)

and the associated p-condition of φ(x, z, z′) to be the formula

θp(x, z, z
′) ∧

n∧
i=1

(kx+ zi /∈ Up,2+vp(m)).

It is easy to see that modulo Sf∗Z or Sf∗Q, an arbitrary special formula implies its associated equational

condition and its associated p-condition for any prime p.

Suppose (G;U G,PG) and (H;U H ,PH) are L∗
u-structures such that the former is an L∗

u-substructure of

the latter. Let ψ(x, z, z′) be a special formula, ψ=(z, z
′) the associated equational condition, and ψp(x, z, z

′)

the associated p-condition for any given prime p. For c ∈ Gn and c′ ∈ Gn
′
, we call the quantifier-free

L∗
u(G)-formula ψ(x, c, c′) a G-system. An element a ∈ H such that ψ(a, c, c′) holds is called a solution of

ψ(x, c, c′) in H. We say that ψ(x, c, c′) is satisfiable in H if it has a solution in H and infinitely satisfiable

in H if it has infinitely many solutions in H. We say that ψ(x, c, c′) is nontrivial if ψ=(c, c
′) holds or more

explicitly if c and c′ have no common components. For a given p, we say that ψ(x, c, c′) is p-satisfiable in H

if there is ap ∈ H such that ψp(ap, c, c
′) holds. A G-system is locally satisfiable in H if it is p-satisfiable in

H for all p.

Suppose (G;<,U G,PG) and (H;<,U H ,PH) are L∗
ou-structures such that the former is an L∗

ou-substructure

of the latter. All the definitions in the previous paragraph have obvious adaptations to this new setting as

(G;U G,PG) and (H;U H ,PH) are L∗
u-structures. For b and b

′ in H such that b < b′, define

(b, b′)H = {a ∈ H : b < a < b′}.

A G-system ψ(x, c, c′) is satisfiable in every H-interval if it has a solution in the interval (b, b′)H for all b

and b′ in H such that b < b′. The following observation is immediate:

Lemma 2.10. Suppose (G;U G,PG) is a model of either Sf∗Z or Sf∗Q. Then every G-system which is

satisfiable in G is nontrivial and locally satisfiable in G.

It turns out that the converse and more are also true for the structures of interest. We say that a model
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(G;U G,PG) of either Sf∗Z or Sf∗Q is generic if every nontrivial locally satisfiable G-system is infinitely

satisfiable in G. An OSf∗Q model (G;<,U G,PG) is generic if every nontrivial locally satisfiable G-system

is satisfiable in every G-interval. We will later show that (Z;U Z,PZ), (Q;U Q,PQ), and (Q;<,U Q,PQ)

are generic.

Before that we will show that the above notions of genericity are first-order. Let ψ(x, z, z′) be the special

formula corresponding to a parameter choice (k,m,Θ) with Θ =
(
θp(x, z, z

′)
)
. A boundary of ψ(x, z, z′) is

a number B ∈ N>0 such that B > max{|k|, n} and θp(x, z, z′) is trivial for all p > B.

Lemma 2.11. Let ψ(x, z, z′) be a special formula, B a boundary of ψ(x, z, z′), and (G;U G,PG) a model of

either Sf∗Z or Sf∗Q. Then every G-system ψ(x, c, c′) is p-satisfiable for p > B.

Proof. Let ψ(x, z, z′) be the special formula corresponding to a parameter choice (k,m,Θ), andB, (G;U G,PG)

as in the statement of the lemma. Suppose ψ(x, c, c′) is a G-system, p > B, and ψp(x, z, z
′) is the associated

p-condition of ψ(x, z, z′). Then ψp(x, c, c
′) is equivalent to

n∧
i=1

(kx+ ci /∈ Up,2+vp(m)) in (G;U G,PG).

We will show a stronger statement that there is a ap ∈ Z satisfying the latter. Note that for all d /∈ UGp,0, we
have that (ka+ d /∈ Up,0) for all a ∈ Z. From Lemma 2.9, we have that UGp,l ⊆ UGp,k whenever k < l, so we

can assume that ci ∈ UGp,0 for i ∈ {1, . . . , n}. In light of Lemma 2.5 (i) and Lemma 2.9 (i), we have that

UGp,0/U
G
p,2+vp(m)

∼=L Z/(p2+vp(m)Z).

It is easy to see that k is invertible mod p2+vp(m) and that p2+vp(m) > n. Choose ap in {0, . . . , p2+vp(m) − 1}
such that the images of kap+ c1, . . . , kap+ cn in Z/(p2+vp(m)Z) are not 0. We check that ap is as desired.

Corollary 2.12. There is an L∗
u-theory SF∗

Z such that the models of SF∗
Z are the generic models of Sf∗Z.

Similarly, there is an L∗
u-theory SF∗

Q and an L∗
ou-theory OSF∗

Q satisfying the corresponding condition for Sf∗Q

and OSf∗Q.

In the rest of this part of the thesis, we fix SF∗
Z, SF

∗
Q, and OSF∗

Q to be as in the previous lemma. We can

moreover arrange them to be recursive. In the remaining part of this section, we will show that (Z;U Z,PZ),

(Q;U Q,PQ) and (Q;<,U Q,PZ) are models of SF∗
Z, SF

∗
Q, and OSF∗

Q respectively. The proof that the latter

are in fact the full axiomatizations of the theories of the former needs to wait until Section 3.1. Further we

fix SFZ and SFQ to be the theories whose models are precisely the Lu-reducts of models of SF∗
Z and SF∗

Q

respectively, and OSFQ to be the theory whose models are precisely Lou reducts of models of OSF∗
Q. For

the reader’s reference, the following table lists all the languages, the corresponding theories and primary

structures under consideration:
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Languages Theories Primary structures

L Th(Z), Th(Q) Z,Q

Lu SFZ, SFQ (Z; SFZ), (Q; SFQ)

Lou OSFQ (Z;<,SFZ), (Q;<,SFQ)

L∗
u Sf∗Z, SF

∗
Z, Sf

∗
Q, SF

∗
Q (Z;U Z,PZ), (Q;U Q,PQ)

L∗
ou OSf∗Q, OSF∗

Q (Q;<,U Q,PQ)

Suppose h ≠ 0. For a term t(z) = k1z1 + . . .+ knzn + e, let th(z) be the term k1z1 + . . .+ knzn + he. If φ(z)

is a boolean combination of atomic formulas of the form t(z) ∈ Up,l or t(z) ∈ Pm where t(z) is an L∗
u-term,

define φh(z) to be the formula obtained by replacing t(z) ∈ Up,l and t(z) ∈ Pm in φ(z) with th(z) ∈ Up,l+vp(h)
and th(z) ∈ Pmh for every choice of p, l, m and L∗

u-term t. It follows from Lemma 2.5 (iii), (vi) and Lemma

2.9 (iii) that across models of Sf∗Z and Sf∗Q,

φh(hz) is equivalent to φ(z).

Moreover, if θ(z) is a p-condition, then θh(z) is also p-condition. If ψ(x, z, z′) is the special formula

corresponding to a parameter choice (k,m,Θ) with Θ =
(
θp(x, z, z

′)
)
, then ψh(x, z, z′) is the special formula

corresponding to the parameter choice (k, hm,Θh) with Θh =
(
θhp (x, z, z

′)
)
. It is easy to see from here that:

Lemma 2.13. For h ̸= 0, any boundary of a special formula ψ(x, z, z′) is also a boundary of ψh(x, z, z′) and

vice versa.

Let ψ(x, z, z′) be a special formula, (G;U G,PG) a model of either Sf∗Z or Sf∗Q, and ψ(x, c, c
′) a G-system.

Then ψh(x, hc, hc′) is also a G-system which we refer to as the h-conjugate of ψ(x, c, c′). This has the

property that ψh(ha, hc, hc′) if and only if ψ(a, c, c′) for all a ∈ G.

For a and b in Z, we write a ≡n b if a and b have the same remainder when divided by n. We need the

following version of Chinese remainder theorem:

Lemma 2.14. Suppose B is in N>0, Θ is a family
(
θp(x, z)

)
p⩽B

of L∗
u-formulas with θp(x, z) being a

p-condition for each p ⩽ B, and c ∈ Zn is such that θp(x, c) defines a nonempty set in (Z;U Z,PZ) for all

p ⩽ B. Then we can find D ∈ N>0 and r ∈ {0, . . . , D − 1} such that for all h ̸= 0 with gcd(h,B!) = 1, we

have

a ≡D hr implies
∧
p⩽B

θhp (a, hc) for all a ∈ Z.

Proof. Let B, Θ, and c be as stated. Fix h ̸= 0 such that gcd(h,B!) = 1. Hence, vp(h) = 0 for p ⩽ B,

and so the p-condition θhp (x, z) is obtained from the p-condition θp(x, z) by replacing any atomic formula

kx+ t(z) ∈ Up,l appearing in θp(x, z) with kx+ th(z) ∈ Up,l. Now for p ⩽ B, let lp be the largest value of l

occurring in an atomic formula in θp(x, z). Set

D =
∏
p⩽B

plp .

Obtain ap ∈ Z such that θp(ap, c) holds in (Z;U Z,PZ). Equivalently, we have θhp (hap, hc) holds in
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(Z;U Z,PZ). By the Chinese remainder theorem, we get r in {0, . . . , D − 1} such that

r ≡plp ap for all p ⩽ B.

We check that r is as desired. Suppose a ∈ Z is such that a ≡D hr. By construction, if p ⩽ B, l ⩽ lp, and

kx+ t(z) ∈ Up,l is any atomic formula, then ka+ th(hc) ∈ UZ
p,l if and only if k(hap)+ t

h(hc) ∈ UZ
p,l. It follows

that θhp (a, hc) is equivalent to θ
h
p (hap, hc) in (Z;U Z,PZ). Thus θhp (a, hc) holds for all p ⩽ B.

Towards showing that the structures of interest are generic, the key number-theoretic ingredient we need is

the following result:

Lemma 2.15. Let ψ(x, z, z′) be a special formula and ψ(x, c, c′) a nontrivial Z-system which is locally

satisfiable in Z. For h > 0, and s, t ∈ Q with s < t, set

Ψh(hs, ht) = {a ∈ Z : ψh(a, hc, hc′) holds and hs < a < ht}.

Then there exists N ∈ N>0, ε ∈ (0, 1), and C ∈ R such that for all h > 0 with gcd(h,N !) = 1 and s, t ∈ Q
with s < t, we have that

|Ψh(hs, ht)| ⩾ εh(t− s)−

(
n∑
i=1

√
|hks+ hci|+

√
|hkt+ hci|

)
+ C.

Proof. Throughout this proof, let ψ(x, z, z′), ψ(x, c, c′), and Ψh(hs, ht) be as stated. We first make a number

of observations. Suppose ψ(x, z, z′) corresponds to the parameter choice (k,m,Θ) and has a boundary B, and

ψp(x, z, z
′) is the associated p-condition of ψ(x, z, z′). Then ψh(x, z, z′) corresponds to the parameter choice

(k, hm,Θh), and B is also a boundary of ψh(x, z, z′) by Lemma 2.13. Moreover ψhp (x, z, z
′) is the associated

p-condition of ψh(x, z, z′). Since ψ(x, c, c′) is locally satisfiable in Z, we can use Lemma 2.14 to fix D ∈ N>0

and r ∈ {0, . . . , D − 1} such that for each h > 0 with gcd(h,B!) = 1, we have

a ≡D hr implies
∧
p⩽B

ψhp (a, hc, hc
′) for all a ∈ Z.

We note that D here is independent of the choice of h for all h with gcd(h,B!) = 1.

We introduce a variant of Ψh(hs, ht) which is needed in our estimation of |Ψh(hs, ht)|. Until the end of

the proof, set lp = 2 + vp(m). Fix primes p1, . . . , pn′ such that p1 > ci for all i ∈ {1, . . . , n}, p1 > c′i′ for all

i′ ∈ {1, . . . , n′} and
B < p1 < . . . < pn′ .

For M > pn′ , h > 0 with gcd(h,B!) = 1, define ΨhM (hs, ht) to be the set of a ∈ Z such that hs < a < ht and

(a ≡D hr) ∧
∧

B<p⩽M

( n∧
i=1

(ka+ hci ̸≡plp+vp(h) 0)
)
∧

n′∧
i′=1

(ka+ hc′i′ /∈ PZ
hm).

It is not hard to see that Ψh(hs, ht) ∩ {a ∈ Z : a ≡D hr} ⊆ Ψh
M (hs, ht), and the latter is intended to be an

upper approximation of the former. The desired lower bound for |Ψh(hs, ht)| will be obtained via a lower

bound for |ΨhM (hs, ht)| and an upper bound for |ΨhM (hs, ht) \Ψh(hs, ht)|.
Now we work towards establishing a lower bound on |ΨhM (hs, ht))| in the case where M > pn′ , h > 0, and
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gcd(h,M !) = 1. The latter assumption implies in particular that plp+vp(h) = plp for all p ⩽M . For p > B,

we have that p > |k| and so k is invertible mod plp . Set

∆ = {p : B < p ⩽M} \ {pi′ : 1 ⩽ i′ ⩽ n′}.

For p ∈ ∆, as k is invertible mod plp , there are at least plp − n (note we have p > B > n) choices of rp in

{0, . . . , plp − 1} such that if a ≡plp rp, then

n∧
i=1

(ka+ hci ̸≡plp 0).

Suppose p = pi′ for some i′ ∈ {1, . . . , n′}. By the assumption that ψ(x, c, c′) is nontrivial, c has no common

components with c′. Since gcd(h,M !) = 1, h and p are coprime, and so the components of hc and hc′ are

pairwise distinct mod plp . As k is invertible mod plp , there is exactly one rp in {0, . . . , plp − 1} such that if

a ≡plp rp, then

n∧
i=1

(ka+ hci ̸≡plp 0) ∧ (ka+ hc′i′ ≡plp 0) and consequently ka+ hc′i′ /∈ PZ
hm.

Now it follows by the Chinese remainder theorem that,

|ΨhM (hs, ht)| ⩾

⌊
ht− hs

D
∏
B<p⩽M plp

⌋ ∏
p∈∆

(
plp − n

)
.

Then it follows that,

|ΨhM (hs, ht)| ⩾ ht− hs
D

∏
p⩽pn′

1

plp

⩽M∏
p>pn′

(
1− n

plp

)
−
∏
p⩽M

plp .

Set

ε =
1

2D

∏
p⩽pn′

1

plp

∏
p>pn′

(
1− n

plp

)
.

Now as lp ⩾ 2, for U ∈ N>0 with U > max{p′n, n2} we have that

∏
p>U

(
1− n

plp

)
>
∏
p>U

(
1− 1

p
3
2

)
.

Hence, it follows from Euler’s product formula that ε > 0. We now have

|ΨhM (hs, ht)| ⩾ 2ε(ht− hs)−
∏
p⩽M

plp .

We note that ε is independent of the choice of M and h, and will serve as the promised ε in the statement of

the lemma.

Next we obtain a upper bound on |ΨhM (s, t) \Ψh(s, t)| for M > pn′ h > 0 and gcd(h,M !) = 1. We arrange

that k > 0 by replacing c by −c and c′ by −c′ if necessary. Note that an element a ∈ ΨhM (s, t) \Ψh(s, t) must
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be such that

hks+ hci < ka+ hci < hkt+ hci for all i ∈ {1, . . . , n}

and ka + hci is a multiple of plp for some p > M and i ∈ {1, . . . , n}. For each p and i ∈ {1, . . . , n}, the
number of non-zero multiples of plp in (hks+ hci, hkt+ hci) is

⌊hk(t− s)p−lp⌋ − 2, or ⌊hk(t− s)p−lp⌋ − 1, or ⌊hk(t− s)p−lp⌋, or ⌊hk(t− s)p−lp⌋+ 1.

In the last case, as lp ⩾ 2 we moreover have

p2 ⩽ |hks+ hci| or p2 ⩽ |hkt+ hci|,

and so

p ⩽
√
|hks+ hci|+

√
|hkt+ hci|.

As lp ⩾ 2, we have ⌊hk(t− s)p−lp⌋ ⩽ hk(t− s)p−2. Therefore we have that

|ΨhM (s, t) \Ψh(s, t)| ⩽ h(t− s)
∑
p>M

nk

p2
+

(
n∑
i=1

√
|hks+ hci|+

√
|hkt+ hci|

)
+ 1.

We now obtain N and C as in the statement of the lemma. Note that∑
p>T

p−2 ⩽
∑
n>T

n−2 = O(T−1).

Using this, we obtain N ∈ N>0 such that N > pn′ and
∑
p>N knp

−2 < ε where ε is from the preceding

paragraph. Set C = −
∏
p⩽N p

lp − 1. Combining the estimations from the preceding two paragraphs for

M = N it is easy to see that ε,N,C are as desired.

Remark 2.16. The above weak lower bound is all we need for our purpose. We expect that a stronger

estimate can be obtained using modifications of available techniques in the literature; see for example [48].

Corollary 2.17. For all c ∈ Z, there is a ∈ Z such that

a+ c ∈ SFZ and a+ c+ 1 ∈ SFZ.

Proof. We have that for all c ∈ Z, ψ(x, c) = (x+ c ∈ SFZ)∧ (x+ c+1 ∈ SFZ) is a locally satisfiable Z-system.

Applying Lemma 2.15 for h = 1, s = 0, and t sufficiently large we see there is a solution a ∈ Z for ψ(x, c).

We next prove the main theorem of the section:

Theorem 2.18. The Sf∗Z-model (Z;U Z,PZ), the Sf∗Q-model (Q;U Q,PQ), and the OSf∗Q-model (Q;<

,U Q,PQ) are generic.

Proof. We get the first part of the theorem by applying Lemma 2.15 for h = 1, s = 0, and t sufficiently large.

As the second part of the theorem follows easily from the third part, it will be enough to show that the

OSf∗Q-model (Q;<,U Q,PQ) is generic. Throughout this proof, suppose ψ(x, z, z) is a special formula and

ψ(x, c, c′) is a Q-system which is nontrivial and locally satisfiable in Q. Our job is to show that the Q-system

ψ(x, c, c′) has a solution in the Q-interval (b, b′)Q for an arbitrary choice of b, b′ ∈ Q such that b < b′.
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We first reduce to the special case where ψ(x, c, c′) is also a Z-system which is nontrivial and locally

satisfiable in Z. Let B be the boundary of ψ(x, z, z′) and for each p, let ψp(x, z, z
′) be the associated

p-condition of ψ(x, z, z′). Using the assumption that ψ(x, c, c′) is locally satisfiable Q-system, for each p < B

we obtain ap ∈ Q such that ψp(ap, c, c
′) holds. Let h > 0 be such that

hc ∈ Zn, hc′ ∈ Zn
′
and hap ∈ Z for all p < B.

Then by the choice of h , Lemma 2.11, and Lemma 2.13, the h-conjugate ψh(x, hc, hc′) of ψ(x, c, c′) is a

Z-system which is nontrivial and locally satisfiable in Z. On the other hand, ψ(x, c, c′) has a solution in a

interval (b, b′)Q if and only if

ψh(x, hc, hc′) has a solution in (hb, hb′)Q.

Hence, by replacing ψ(x, z, z′) with ψh(x, z, z′), ψ(x, c, c′) with ψh(x, hc, hc′), and (b, b′)Q with (hb, hb′)Q if

necessary we get the desired reduction.

We show ψ(x, c, c′) has a solution in the Q-interval (b, b′)Q for the special case in the preceding paragraph.

By an argument similar to the preceding paragraph, it suffices to show that for some h ≠ 0, ψh(x, hc, hc′)

has a solution in (hb, hb′)Q. Applying Lemma 2.15 for s = b, t = b′, and h sufficiently large satisfying the

condition of the lemma, we get the desired conclusion.
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CHAPTER 3

The model theoretic consequences

In Section 3.1, we establish the model completeness and decidability assertions of Theorems 2.1, 2.2 2.3, 2.4,

and the parts of these results that concern placing the structures on the combinatorial tameness spectrum

are proven in Section 3.2.

3.1 Logical tameness

We will next prove that SF∗
Z, SF

∗
Q, and OSF∗

Q admit quantifier elimination. We first need a technical lemma

saying that modulo Sf∗Z or Sf∗Q, an arbitrary quantifier free formula ϕ(x, y) is not much more complicated

than a special formula; recall that x always denotes a single variable.

Lemma 3.1. Suppose φ(x, y) is a quantifier-free L∗
u-formula. Then φ(x, y) is equivalent modulo Sf∗Z to a

disjunction of quantifier-free formulas of the form

ρ(y) ∧ ε(x, y) ∧ ψ(x, t(y), t′(y))

where

(i) t(y) and t′(y) are tuples of L∗
u-terms with length n and n′respectively;

(ii) ρ(y) is a quantifier-free L∗
u-formula, ε(x, y) an equational condition, ψ(x, z, z′) a special formula.

The corresponding statement with Sf∗Z replaced by Sf∗Q also holds.

Proof. Let φ(x, y) be a quantifier-free L∗
u-formula. We will use the following disjunction observation several

times in our proof: If φ(x, y) is a finite disjunction of quantifier-free L∗
u-formulas and we have proven the

desired statement for each of those, then the desired statement for φ(x, y) follows. In particular, it allows us

to assume that φ(x, y) is the conjunction

ρ(y) ∧ ε(x, y) ∧
∧
p

ηp(x, y) ∧
n∧
i=1

(kix+ ti(y) ∈ Pmi) ∧
n′∧
i=1

(k′ix+ t′i(y) /∈ Pm′
i
)

where ρ(y) is a quantifier-free L∗
u-formula, ε(x, y) is an equational condition, k1, . . . , kn and k′1, . . . , k

′
n′ are

in Z \ {0}, m1, . . . ,mn and m′
1, . . . ,m

′
n′ are in N⩾1, t1(y), . . . , tn(y) and t

′
1(y), . . . , t

′
n(y) are L

∗
u-terms with

variables in y, ηp(x, y) is a p-condition for each p, and ηp(x, y) is trivial for all but finitely many p.

19



Wemake further reductions to the form of φ(x, y). Set t(y) = (t1(y), . . . , tn(y)) and t
′(y) = (t′1(y), . . . , t

′
n′(y)).

Using the disjunction observation and the fact that

(x+ yj ∈ P1) ∨ (x+ yj /∈ P1)

is a tautology for every component yj of y, we can assume that either x+ yj ∈ P1 or x+ yj /∈ P1 are among

the conjuncts of φ(x, y), and so yj is among the components of t(y) or t′(y). Then we obtain for each prime

p a p-condition θp(x, z, z
′) such that θp(x, t(y), t

′(y)) is logically equivalent to ηp(x, y). Let ξ(x, z, z
′) be the

formula ∧
p

θp(x, z, z
′) ∧

n∧
i=1

(kix+ zi ∈ Pmi) ∧
n′∧
i=1

(k′ix+ z′i /∈ Pm′
i
).

Clearly, φ(x, y) is equivalent to the formula ρ(y) ∧ ε(x, y) ∧ ξ(x, t(y), t′(y)), so we can assume that φ(x, y) is

the latter.

We need a small observation. For a p-condition θp(z) and h ̸= 0, we will show that there is another

p-condition ηp(z) such that modulo Sf∗Z and Sf∗Q,

ηp(z1, . . . , zi−1, hzi, zi+1, . . . , zn) is equivalent to θp(z).

For the special case where θp(z) is t(z) ∈ Up,l, the conclusion follows from Lemma 2.5(iii), Lemma 2.9(iii)

and the fact that there is an L∗
u-term t′(z) such that t′(z, . . . , zi−1, hzi, zi+1, . . . , zn) = ht(z). The statement

of the paragraph follows easily from this special case.

With φ(x, y) as in the end of the second paragraph, we further reduce the main statement to the special

case where there is k ̸= 0 such that ki = k′i′ = k for all i ∈ {1, . . . , n} and i′ ∈ {1, . . . , n′}. Choose k ≠ 0 to

be a common multiple of k1, . . . , kn and k′1, . . . k
′
n′ . Then by Lemma 2.5(vi) and Lemma 2.9(iii), we have for

each i ∈ {1, . . . , n} that

kix+ zi ∈ Pmi is equivalent to (kx+ kk−1
i zi ∈ Pkk−1

i mi
) modulo either Sf∗Z or Sf∗Q.

We have a similar observation for k and k′i′ with i
′ ∈ {1, . . . , n′}. The desired reduction easily follows from

these observations and the preceding paragraph.

Continuing with the reduction in the preceding paragraph, we next arrange that there is m > 0 such that

mi = m′
i′ = m for all i ∈ {1, . . . , n} and i′ ∈ {1, . . . , n′}. Let m be a common multiple of m1, . . . ,mn and

m′
1, . . .m

′
n′ . By Lemma 2.5(v, vi) and Lemma 2.9(iii), we have for i ∈ {1, . . . , n} that modulo either Sf∗Z or

Sf∗Q

kx+ zi ∈ Pmi is equivalent to kx+ zi ∈ Pm ∧
∧
p| m

mi

kx+ zi /∈ Up,2+vp(mi)

and for i′ ∈ {1, . . . , n′} that modulo either Sf∗Z or Sf∗Q

kx+ z′i′ /∈ Pm′
i′

is equivalent to kx+ z′i′ /∈ Pm ∨
∨
p| m

m′
i′

kx+ z′i′ ∈ Up,2+vp(m′
i′ )
.

It follows that φ(x, y) is equivalent to a disjunction of formulas of the form we are aiming for. The desired

conclusion of the lemma follows from the disjunction observation.

Corollary 3.2. Suppose φ(x, y) is a quantifier-free L∗
ou formula. Then φ(x, y) is equivalent modulo OSf∗Q to
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a disjunction of quantifier-free formulas of the form

ρ(y) ∧ λ(x, y) ∧ ψ(x, t(y), t′(y))

where

(i) t(y) and t′(y) are tuples of L∗
ou-terms with length n and n′respectively;

(ii) ρ(y) is a quantifier-free L∗
ou-formula, λ(x, y) an order condition, ψ(x, z, z′) a special formula.

In the next lemma, we show a “local quantifier elimination” result.

Lemma 3.3. If φ(x, z) is a p-condition, then modulo either Sf∗Z or Sf∗Q, the formula ∃xφ(x, z) is equivalent

to a p-condition ψ(z).

Proof. If φ(x, z) is a p-condition, then by Lemma 2.5 (i), modulo Sf∗Z, it is a boolean combination of atomic

formulas of the form kx+ t(z) ∈ Up,l where t(z) is an L∗
u-term, and l > 0. Let lp be the largest value of l

occurring in such atomic formulas, and set

S = {(m1, . . . ,mn) : 0 ⩽ mi < plp for each i, and (Z;U Z) |= ∃xφ(x,m1, . . . ,mn)}.

Then by Lemma 2.5 (i), modulo Sf∗Z, ∃xφ(x, z) is equivalent to the p-condition
∨

(m1,...,mn)∈S(
∧n
i=1(zi ≡plp

mi)) .

Now, we proceed to prove the statement for models of Sf∗Q. Throughout the rest of the proof, suppose

φ(x, z) is a p-condition, k, k′, l, l′ are in Z, and t(z), t′(z) are L∗
u-terms. First, we consider the case where

φ(x, z) is a p-condition of the form kx+t(z) ∈ Up,l. The case k = 0 is trivial. If k ̸= 0, then ∃x(kx+t(z) ∈ Up,l)
is tautological modulo Sf∗Q following from (Q1) in the definition of Sf∗Q and Lemma 2.9(i).

We next consider the case where φ(x, z) is a finite conjunction of p-conditions in L∗
u(x, z) such that one of

the conjuncts is kx+ t(z) ∈ Up,l with k ̸= 0 and the other conjuncts are either of the form k′x+ t′(z) ∈ Up,l′
or of the form k′x+ t′(z) /∈ Up,l′ where we do allow l′ to vary. It follows from Lemma 2.9(i) that if k = k′,

l ⩾ l′, then

k′x+ t′(z) ∈ Up,l′ if and only if t(z)− t′(z) ∈ Up,l′ .

So we have means to replace conjuncts of φ(x, z) by terms independent of the variable x. However, the above

will not work if k ̸= k′ or l < l′. By Lemma 2.9(iii), across models of Sf∗Q, we have that

kx+ t(z) ∈ Up,l if and only if hkx+ ht(z) ∈ Up,l+vp(h) for all h ̸= 0.

From this observation, it is easy to see that we can resolve the issue of having k ̸= k′, and moreover arrange

that l ⩾ 0 which will be used in the next observation. By Lemma 2.9(i,ii), across models of Sf∗Q, we have that

kx+ t(z) ∈ Up,l if and only if

pm∨
i=1

kz + t(z) + ipl ∈ Up,l+m for all l ⩾ 0 and all m.

Using the preceding two observations we resolve the issue of having l < l′. The statement of the lemma for

this case then follows from the second paragraph.

We now prove the full lemma. It suffices to consider the case where φ(x, z) is a conjunction of atomic
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formulas. In view of the preceding paragraph, we reduce further to the case where φ(x, z) is of the form

m∧
i=1

kx+ ti(z) /∈ Up,li

We now show that ∃xφ(x, z) is a tautology over Sf∗Q and thus complete the proof. Suppose (G;U G,PG) |=
Sf∗Q and c ∈ Gn. It suffices to find a ∈ G such that the p-condition ka + ti(c) /∈ UGp,li holds for all

i ∈ {1, . . . ,m} . Without loss of generality, we assume that t1(c), . . . , tm′(c) are not in UGp,l for all l and that

tm′+1(c), . . . , tm(c) are in UGp,l0 for some l0 such that l0 < li for all i ∈ {1, . . . ,m}. Using 2.9(ii), choose a

such that ka ∈ UGp,l0−1 \ UGp,l0 . It follows from Lemma 2.9(i) that a is as desired.

Theorem 3.4. The theories SF∗
Z, SF

∗
Q, and OSF∗

Q admit quantifier elimination.

Proof. As the three situations are very similar, we will only present here the proof that OSF∗
Q admits quantifier

elimination. The proof for SF∗
Z and SF∗

Q are simpler as there is no ordering involved. Along the way we point

out the necessary modifications needed to get the proof for SF∗
Z and SF∗

Q. Fix OSF∗
Q-models (G;<,U G,PG)

and (H;<,U H ,PH) such that the latter is |G|+-saturated. Suppose

f is a partial L∗
ou-embedding from (G;<,U G,PG) to (H;<,U H ,PH),

in other words, f is an L∗
ou-embedding of an L∗

ou-substructure of (G;<,U G,PG) into (H;<,U H ,PH).

By a standard test, it suffices to show that if Domain(f) ̸= G, then there is a partial L∗
ou-embedding from

(G;<,U G,PG) to (H;<,U H ,PH) which properly extends f . For the corresponding statements with SF∗
Z

or SF∗
Q, we need to consider instead (G;U G,PG) and (H;U H ,PH) depending on the situation.

We remind the reader that our choice of language includes a symbol for additive inverse, and so Domain(f)

is automatically a subgroup of G. Suppose Domain(f) is not a pure subgroup of G, that is, there is an

element Domain(f) which is n-divisible in G but not n-divisible in Domain(f) for some n > 0. Then there is

prime p and a in G \Domain(f) such that pa ∈ Domain(f). Using divisibility of H, we get b ∈ H such that

pb = f(pa). Let g be the extension of f given by

ka+ a′ 7→ kb+ f(a′) for k ∈ {1, . . . , p− 1} and a′ ∈ Domain(f).

It is routine to check that g is an ordered group isomorphism from ⟨Domain(f), a⟩ to ⟨Image(f), b⟩. It is also
easy to check using Lemma 2.9(iii) that ka+ a′ ∈ UGp′,l if and only if kb+ f(a′) ∈ UGp′,l and ka+ a′ ∈ PGm if

and only if kb+ f(a′) ∈ UGm for all k, l, m, primes p′, and a′ ∈ Domain(f). Hence,

g is a partial L∗
ou-embedding from (G;<,U G,PG) to (H;<,U H ,PH).

Clearly, g properly extends f , so the desired conclusion follows. The proof for SF∗
Q is the same but without

the verification that the ordering is preserved. The situation for SF∗
Z is slightly different as H is not divisible.

However, for all primes p′, p′a is in p′G = UGp′,1, and so f(p′a) is in UHp′,1 = p′H. The proof proceeds similarly

using 2.5(4-6).

The remaining case is when Domain(f) ̸= G is a pure subgroup of G. Let a be in G \ Domain(f). We

need to find b in H \ Image(f) such that

qftpL∗
ou
(a/Domain(f)) = qftpL∗

ou
(b/Image(f)).
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By the fact that Domain(f) is pure in G, and Corollary 3.2, qftpL∗
ou
(a | Domain(f)) is isolated by formulas

of the form

ρ(b) ∧ λ(x, b) ∧ ψ(x, t(b), t′(b))

where ρ(y) is a quantifier-free L∗
ou-formula, λ(x, y) is an order condition, ψ(x, z, z′) a special formula, t(y)

and t′(y) are tuples of L∗
ou-terms of suitable length, b is a tuple of elements of Domain(f) of suitable

length, and ψ(x, t(b), t′(b)) is a nontrival Domain(f)-system. As Domain(f) is a pure subgroup of G, we can

moreover arrange that λ(x, b) is simply the formula b1 < x < b2. Since f is an L∗
ou-embedding, ρ(f(b)) holds,

f(b1) < f(b2), and ψ
(
x, t(f(b)), t′(f(b))

)
is a nontrivial Image(f)-system. Using the fact that (H;<,U H ,PH)

is |G|+-saturated, the problem reduces to showing that

ψ
(
x, f

(
t(b)
)
, f
(
t′(b)

))
has a solution in the interval (f(b1), f(b2))

H .

As ψ(x, t(b), t′(b)) is satisfiable in G, it is locally satisfiable in G by Lemma 2.10. For each p, let ψp(x, z, z
′)

be the associated p-condition of ψ(x, z, z′). By Lemma 3.3, for all p, the formula ∃xψp(x, z, z′) is equivalent
modulo Sf∗Q to a quantifier free formula in L∗

u(z, z
′). Hence, ∃xψp

(
x, f

(
t(b)

)
, f
(
t′(b)

))
holds in (H;<

,U H ,PH) for all p. Thus,

the Image(f)-system ψ
(
x, f

(
t(b)
)
, f
(
t′(b)

))
is locally satisfiable in H.

The desired conclusion follows from the genericity of (H;<,U H ,PH). The proofs for SF∗
Z and SF∗

Q are

similar. However, we have there the formula
∧k
i=1 x ̸= bi with k ⩽ |b| instead of the formula b1 < x < b2,

Lemma 3.1 instead of Corollary 3.2, and the corresponding notion of genericity instead of the current one.

Corollary 3.5. The theory SF∗
Z is a recursive axiomatization of Th(Z;U Z,PZ), and is therefore decidable.

Similar statements hold for SF∗
Q in relation to Th(Q;U Q,PQ) and OSF∗

Q in relation to Th(Q;< U Q,PQ).

Proof. By Lemma 2.5(ii), the subgroup generated by 1 in an arbitrary model (G;U G,PG) of SF∗
Z is

an isomorphic copy of (Z;U Z,PZ). Hence by Theorem 3.4, SF∗
Z is complete, and on the other hand

(Z;U Z,PZ) |= SF∗
Z by Theorem 2.18. The first statement of the corollary follows. The justification of the

second statement is obtained in a similar fashion.

Proof of Theorem 2.1, part 1. We show that the Lu-theory of (Z; SFZ) is model complete and decidable. For

all p, l ⩾ 0, m > 0, and all a ∈ Z, we have the following:

1. a ∈ UZ
p,l if and only there is b ∈ Z such that plb = a;

2. a /∈ UZ
p,l if and only if for some i ∈ {1, . . . , pl − 1}, there is b ∈ Z such that plb = a+ i;

3. a ∈ PZ
m if and only if for some d | m, there is b ∈ Z such that a = bd and b ∈ SFZ;

4. a /∈ PZ
m if and only if for all d | m, either for some i ∈ {1, . . . , d− 1}, there is b ∈ Z such that db = a+ i

or there is b ∈ Z such that a = bd and b /∈ SFZ.

As (Z;U Z,PZ) |= SF∗
Z, it then follows from Theorem 3.4 and the above observation that every 0-definable

set in (Z,SFZ) is existentially 0-definable. Hence, the theory of (Z; SFZ) is model complete. The decidability

of Th(Z; SFZ) is immediate from the preceding corollary.

Lemma 3.6. Suppose a ∈ Q has vp(a) < 0. Then there is ε ∈ Q such that vp(ε) ⩾ 0 and a+ ε ∈ SFQ.
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Proof. Suppose a is as stated. If a ∈ SFQ we can choose ε = 0, so suppose a is in Q \ SFQ. We can also

arrange that a > 0. Then there are m,n, k ∈ N⩾1 such that

a =
m

npk
, (m,n) = 1, (m, p) = 1, and (n, p) = 1.

It suffices to show there is b ∈ Z such that m+ pkb is a square-free integer as then

a+
b

n
=
m+ pkb

npk
∈ SFQ.

For all prime l, pkbl+m /∈ UQ
l,2 for bl = 0 or 1. The conclusion then follows from the genericity of (Z;U Z,PZ)

as established in Theorem 2.18.

Corollary 3.7. For all p and l, UQ
p,l is universally 0-definable in (Q,SFQ).

Proof. We will instead show that Q \ UQ
p,l = {a : vp(a) < l} is existentially 0-definable for all p and l. As

Q \UQ
p,l+n = pn(Q \UQ

p,l) for all p, l, and n, it suffices to show the statement for l = 0. Fix a prime p. By the

preceding lemma we have that for all a, vp(a) < 0 if and only if

there is ε such that vp(ε) ⩾ 0, a+ ε ∈ SFQ and vp(a+ ε) < 0.

We recall that {ε : vp(ε) ⩾ 0} is existentially 0-definable by Lemma 2.7. Also, for all a′ ∈ SFQ, we have that

vp(a
′) < 0 is equivalent to p2a′ ∈ SFQ. The conclusion hence follows.

Proof of Theorem 1.3 and 1.4, part 1. We show that the Lu-theory of (Q; SFQ) and the Lou-theory of (Q;<

,SFQ) are model complete and decidable. The proof is almost exactly the same as that of part 1 of Theorem

1.1. It follows from Lemma 2.7 and Corollary 3.7 that for all p and l, the sets UQ
p,l are existentially and

universally 0-definable in (Q; SFQ). For all m, PQ
m = mSFQ and Q \PQ

m = m(Q \SFQ) are clearly existentially

0-definable. The conclusion follows.

Next, we will show that the Lou-theory of (Z;<,SFZ) is bi-interpretable with arithmetic. The proof follow

closely the arguments from [7]. In fact, we can slightly modify Corollary 3.9 to use essentially the same proof

at the cost of replacing n2 with n2 + n.

Lemma 3.8. Let c1, . . . , cn be an increasing sequence of natural numbers, assume that for all primes p, there

is a solution to the system of congruence inequations

x+ ci /∈ UZ
p,2 for all i ∈ {1, . . . , n}.

Then there is a ∈ N such that a+ c1, . . . , a+ cn are consecutive square-free integers.

Proof. Suppose c1, . . . , cn are as given. Let c′1, . . . , c
′
n′ be the listing in increasing order of elements in the set

of c ∈ N such that c1 ⩽ c ⩽ cn and c ̸= ci for i ∈ {1, . . . , n}. The conclusion that there are infinitely many a

such that
n∧
i=1

(a+ ci ∈ SFZ) ∧
n′∧
i=1

(a+ c′i /∈ SFZ)

follows from the assumptions about c1, . . . , cn and the genericity of (Z;U Z,PZ) as established in Theorem

2.18.
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Corollary 3.9. For all n ∈ N>0, there is a ∈ N such that a+ 1, a+ 4, . . . , a+ n2 are consecutive square-free

integers .

Proof. For each p, we can obtain a ∈ {1, 2, . . . , p2 − 1} such that

a ̸≡p2 −m2 for all m.

Hence, for any given n > 0 and p, the p-condition
∧n
i=1(x+ i2 /∈ UZ

p,2) has a solution. The result now follows

immediately from the preceding lemma.

Proof of Theorem 2.2. It suffices to show that (Z;<,SFZ) interprets multiplication on N. Let T be the set of

(a, b) ∈ N2 such that for some n ∈ N⩾1,

b = a+ n2 and a+ 1, a+ 4, . . . , a+ n2 are consecutive square-free integers.

The set T is definable in (Z;<,SFZ) as (a, b) ∈ T and b ̸= a + 1 if and only if a + 4 ⩽ b, a + 1 and a + 4

are consecutive square-free integers, b is square-free, and whenever c, d, and e are consecutive square-free

integers with a < c < d < e ⩽ b, we have that

(e− d)− (d− c) = 2.

Let S be the set {n2 : n ∈ N}. If c = 0 or there are a, b such that (a, b) ∈ T and b− a = c, then c = n2 for

some n. Conversely, if c = n2, then either c = 0 or by Corollary 3.9,

there is (a, b) ∈ T with b− a = c.

Therefore, S is definable in (Z;<,SFZ). The map n 7→ n2 in N is definable in (Z;<,SFZ) as b = a2 if and

only if b ∈ S and whenever c ∈ S is such that c > b and b, c are consecutive in S, we have that c− b = 2a+ 1.

Finally, c = ba if and only if 2c = (b+ a)2− b2− a2. Thus, multiplication on N is definable in (Z;<,SFZ).

3.2 Combinatorial tameness

As the theories SF∗
Z, SF

∗
Q, and OSF∗

Q are complete, it is convenient to work in the so-called monster models,

that is, models which are very saturated and homogeneous. Until the end of the section, let (G;U G,PG) be a

monster model of either SF∗
Z or SF∗

Q depending on the situation. In the latter case, we suppose (G;<,U G,PG)

is a monster model of OSF∗
Q. We assume that κ,A and I have small cardinalities compared to G.

Our general strategy to prove the tameness of SF∗
Z, SF

∗
Q, and OSF∗

Q is to link them to the corresponding

“local” facts. The next lemma says that SF∗
Z is “locally” supersimple of U-rank 1.

Lemma 3.10. Suppose (G;U G,PG) |= SF∗
Z, θp(x, y) is a consistent p-condition, and b is in G|y|. Then

θp(x, b) does not divide over any base set A ⊆ G.

Proof. Recall that every every p-condition is equivalent modulo SF∗
Z to a formula in the language L of groups,

and the reduct of SF∗
Z to L is simply Th(Z). Hence, the desired conclusion is an immediate consequence of

the well-known fact that Th(Z) is superstable of U -rank 1 [8]; see for example .
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Proof of Theorem 2.1, part 2. We first show that Th(Z; SFZ) is supersimple of U-rank 1; see [42, p. 36] for a

definition of U-rank or SU-rank. By the fact that (Z; SFZ) has the same definable sets as (Z;U Z,PZ) and

Corollary 3.5, we can replace Th(Z; SFZ) with SF∗
Z. Suppose (G;U G,PG) |= SF∗

Z. Our job is to show that

every L∗
u(G)-formula φ(x, b) which forks over a small subset A of G must define a finite set in G. We can

easily reduce to the case that φ(x, b) divides over A. Moreover, we can assume that φ(x, b) is quantifier free

by Theorem 3.4 which states that (G;U G,PG) admits quantifier elimination. Using Lemma 3.1, we can also

arrange that φ(x, b) has the form

ρ(b) ∧ ε(x, b) ∧ ψ(x, t(b), t′(b))

where ρ(y) is a quantifier-free formula, ε(x, y) is an equational condition, t(y) and t′(y) are tuples of L∗
u-terms

with length n and n′ respectively, and ψ(x, z, z′) is a special formula.

Suppose to the contrary that φ(x, b) divides over A but φ(x, b) defines an infinite set in G. From the

first assumption, we get an infinite ordering I and a family (σi)i∈I of L∗
u-automorphisms of (G;U G,PG)

such that (σi(b))i∈I is indiscernible over A and
∧
i∈I φ(x, σi(b)) is inconsistent. As φ(x, b) defines an infinite

set in G, we get from the second assumption that ρ(b) holds in G, ε(x, b) defines a cofinite set in G, and

ψ(x, t(b), t′(b)) defines an infinite hence non-empty set in G. As (σi(b))i∈I is indiscernible, we have that

ρ(σi(b)) holds in G and ε(x, σi(b)) defines a cofinite set in G for all i ∈ I. Using the saturation of G, we get a

finite set ∆ ⊆ I such that

θ∆(x) :=
∧
i∈∆

ψ
(
x, t(σi(b)), t

′(σi(b))
)
defines a finite set in G.

As θ∆(x) is a conjunction of G-systems given by the same special formula, it is easy to see that θ∆(x) is also

a G-system.

We will show that θ∆(x) defines an infinite set and thus obtain the desired contradiction. As (G;U G,PG)

is a model of SF∗
Z and hence generic, it suffices to show that θ∆(x) is non-trivial and locally satisfiable.

As φ(x, b) is consistent, t(b) has no common components with t′(b). The assumption that (σi(b))i∈I is

indiscernible gives us that t(σi(b)) has no common components with t′(σj(b)) for all i and j in I. It follows

that θ∆(x) is non-trivial. For each p, let ψp(x, z, z
′) be the associated p-condition of ψ(x, z, z′). For all p, we

have that ψp(x, t(b), t(b
′)) defines a nonempty set and consequently by Lemma 3.10,∧
i∈∆

ψp
(
x, t(σi(b)), t

′(σi(b))
)
defines a nonempty set in G.

We easily check that the above means θ∆(x) is p-satisfiable for all p. Thus θ∆(x) is locally satisfiable which

completes our proof that Th(Z,SFZ) has U-rank 1.

We will next prove that Th(Z,SFZ) is k-independent for all k > 0; see [19] for a definition of k-independence.

The proof is almost the exact replica of the proof in [41] except the necessary modifications taken in the

current paragraph. Suppose l > 0, S is an arbitrary subset of {0, . . . , l − 1}. Our first step is to show that

there are a, d ∈ N such that for t ∈ {0, . . . , l − 1},

a+ td is square-free if and only if t is in S.

Let n = |S| and n′ = l−n, and let c ∈ Zn be the increasing listing of elements in S and c′ ∈ Zn′
the increasing
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listing of elements in {0, . . . , l − 1} \ S. Choose d = (l!)2. We need to find a such that

n∧
i=1

(a+ cid ∈ SFZ) ∧
n′∧
i=1

(a+ c′id /∈ SFZ).

For p ⩽ l, if ap /∈ p2Z = UZ
p,2, then ap + cid /∈ p2Z for all i ∈ {1, . . . , n}. For p > l, it is easy to see that

0 + cid /∈ p2Z for all i ∈ {1, . . . , n}. The desired conclusion follows from the genericity of (Z;U Z,PZ).

Fix k > 0. We construct an explicit Lu-formula which witnesses the k-independence of Th(Z,SFZ). Let

y = (y0, . . . , yk−1) and let φ(x, y) be a quantifier-free L∗
u-formula such that for all a ∈ Z and b ∈ Zk,

φ(a, b) if and only if a+ b0 + · · ·+ bk−1 ∈ SFZ where b = (b0, . . . , bk−1).

We will show that for any given n > 0, there are families (a∆)∆⊆{0,...,n−1}k and (bij)0⩽i<k,0⩽j<n of integers

such that

φ(a∆, b0,j0 , . . . , bk−1,jk−1
) if and only if (j0, . . . , jk−1) ∈ ∆.

Let f : P({0, . . . , n − 1}k) → {0, . . . , 2(nk) − 1} be an arbitrary bijection. Let g be the bijection from

{0, . . . , n− 1}k to {0, . . . , nk − 1} such that if b and b′ are in {0, . . . , n− 1}k and b <lex b
′, then g(b) < g(b′).

More explicitly, we have

g(j0, . . . , jk−1) = j0n
k−1 + j1n

k−2 + · · ·+ jk−1 for (j0, . . . , jk−1) ∈ {0, . . . , n− 1}k.

It follows from the preceding paragraph that we can find an arithmetic progression (ci)i∈{0,...,nk2(nk)−1} such

that for all ∆ ⊆ {0, . . . , n− 1}k and (j0, . . . , jk−1) in {0, . . . , n− 1}k, we have that

cf(∆)nk+g(j0,...,jk−1) ∈ SFZ if and only if (j0, . . . , jk−1) ∈ ∆.

Suppose d = c1 − c0. Set bij = djnk−i−1 for i ∈ {0, . . . , k − 1} and j ∈ {0, . . . , n− 1}, and set a∆ = cf(∆)nk

for ∆ ⊆ {0, . . . , n− 1}k. We have

cf(∆)nk+g(j0,...,jk−1) = cf(∆)nk + dg(j0, . . . , jk−1) = a∆ + b0,j0 + · · ·+ bk−1,jk−1
.

The conclusion thus follows.

Lemma 3.11. Every p-condition θp(x, y) is stable in SF∗
Q.

Proof. Suppose θp(x, y) is as in the statement of the lemma. It is clear that if θp(x, y) does not contain the

variable x, then it is stable. As stability is preserved under taking boolean combinations, we can reduce

to the case where θp(x, y) is kx + t(y) ∈ Up,l with k ̸= 0. We note that for any b and b′ in G|y|, the sets

defined by θp(x, b) and θp(x, b
′) are either the same or disjoint. It follows easily that θp(x, y) does not have

the order property; in other words, θp(x, y) is stable. Alternatively, the desired conclusion also follows from

the fact that (Q;U Q) is an abelian structure and hence stable; see [62, p. 49] for the relevant definition and

result.

Proof of Theorem 2.3, part 2. We first show that Th(Q; SFQ) is simple. By the fact that (Q; SFQ) has the

same definable sets as (Q;U Q,PQ) and Corollary 3.5, we can replace Th(Q; SFQ) with SF∗
Q. Towards a

contradiction, suppose that the latter is not simple. We obtain a formula φ(x, y) witnessing the tree property
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of SF∗
Q; see [42, pp. 24-25] for the definition and proof that this is one of the equivalent characterizations of

simplicity. We can arrange that φ(x, y) is quantifier-free by Theorem 3.4. Recall that disjunction preserves

simplicity of formulas; this can be shown directly as an exercise or can be seen immediately from the

equivalence between (1) and (3) in [42, Lemma 2.4.1]. Hence using Lemma 3.1, we can arrange that φ(x, y)

is of the form

ρ(y) ∧ ε(x, y) ∧ ψ(x, t(y), t′(y))

where ρ(y) is a quantifier-free L∗
u-formula, ε(x, y) is an equational condition, t(y) and t′(y) are tuples of

L∗
u-terms with lengths n and n′ respectively, and ψ(x, z, z′) is a special formula. Let (G;U G,PG) |= SF∗

Q.

Then there is b ∈ Gk with k = |y|, an uncountable cardinal κ, and a tree (σs)s∈ω<κ of L∗
u-automorphisms of

(G;U G,PG) with the following properties:

1. for all s ∈ ω<κ, {φ(x, σs⌢(i)(b)) : i ∈ ω} is inconsistent;

2. for all ŝ ∈ ωκ, {φ(x, σŝ↾α(b)) : α < κ} is consistent;

3. for every α < κ and s, s′ ∈ ωα, tp
(
(σs⌢(i)(b))i

)
= tp

(
(σs′⌢(i)(b))i

)
.

More precisely, we can get b, κ, and (σt)t∈ω<κ satisfying (1) and (2) from the fact that φ(x, y) witnesses the

tree property of SF∗
Q, a standard Ramsey arguments, and the monstrosity of (G;U G,PG). We can then

arrange that (3) also holds using results in [43]; a direct argument is also straightforward.

We deduce the desired contradiction by showing that there is s ∈ ω<κ such that {φ(x, σs⌢(i)(b)) : i ∈ ω}
is consistent. From (1-3), we get for all s ∈ ω<κ that ρ(σs(b)) holds and ε(x, σs(b)) defines a cofinite set. By

montrosity of G, it suffices to find s ∈ ω<κ such that any finite conjunction of {ψ
(
x, t(σs⌢(i)(b)), t

′(σs⌢(i)(b))
)
:

i ∈ ω} defines an infinite set in G. For s ∈ ω<κ and a finite ∆ ⊆ ω, set

θs,∆(x) :=
∧
i∈∆

ψ
(
x, t(σs⌢(i)(b)), t

′(σs⌢(i)(b))
)
.

As κ is uncountable, to ensure the desired s ∈ ω<κ exists, it suffices to show for fixed ∆ that for all but

countably many α < κ and all s ∈ ωα, the formula θs,∆(x) defines an infinite set in G.

Note that θs,∆(x) is a conjunction of G-systems given by the same special formula, so θs,∆(x) is also a

G-system. By the genericity of SF∗
Q established in Theorem 2.18, we need to check that for all but countably

many α < κ and all s ∈ ωα, the G-system θs,∆(x) is nontrivial and locally satisfiable. Indeed, this implies

that By (2), φ(x, b) is consistent, and so is ψ(x, t(b), t′(b)). This implies in particular that t(b) and t′(b) have

no common components. It then follows from (3) that for s ∈ ω<κ and i, j ∈ ω,

t(σs⌢(i)(b)) and t
′(σs⌢(j)(b)) have no common elements .

Hence, θs,∆(x) is nontrivial for all s ∈ ω<κ. Let ψp(x, z, z′) be the associated p-condition of ψ(x, z, z′). We

then get from (2) that {ψp(x, t(σŝ↾α(b)), t′(σŝ↾α(b))) : α < κ} is consistent for all ŝ ∈ ωκ. By Lemma 3.11,

the formula ψp(x, t(y), t
′(y)) is stable and hence does not witness the tree property. It follows that for all but

finitely many α < κ and all s ∈ ωα, the set

{ψp
(
x, t(σs⌢(i)(b)), t

′(σs⌢(i)(b))
)
: i ∈ ω} is consistent.

For such s, we have that θs,∆(x) is p-satisfiable. So for all but countably many α < κ and all s ∈ ωα, θs,∆(x)

is locally satisfiable which completes the proof that Th(Q; SFQ) is simple.
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We next prove that Th(Q; SFQ) is not strong which implies that it is not supersimple; for the definition

of strength and the relation to supersimplicity see [1]. Again, we can replace Th(Q; SFQ) by SF∗
Q using

Proposition 2.8 and Corollary 3.5. For each p, let φp(x, y) with |y| = 1 be the formula x − y ∈ Up,0. For

all p and i, set bp,i = p−i. We will show that
(
φp(x, y), (bp,i)i∈N)

)
forms an inp-pattern of infinite depth in

(Q;U Q,PQ). For distinct i and j in N, we have that p−i−p−j /∈ UQ
p,0 which implies that φp(x, bp,i)∧φp(x, bp,j)

is inconsistent. On the other hand, if S is a finite set of primes, and f : S → N is an arbitrary function, then

for a = Σp∈Sbp,f(p) we have that (Q;U Q,PQ) |=
∧
p∈S φp(a, bp,f(p)). The desired conclusion follows.

Finally, we note that (Z;U Z,PZ) is a substructure of (Q;U Q,PQ), the former theory admits quantifier

elimination and has IPk for all k > 0. Therefore, the latter also has IPk for all k > 0. In fact, the construction

in part 2 of the proof of Theorem 2.1 carries through.

Lemma 3.12. Any order-condition has NIP in OSF∗
Q.

Proof. The statement immediately follows from the fact that every order condition is a formula in the

language of ordered groups and the fact that the reduct of any model of OSF∗
Q to this language is an ordered

abelian group, which has NIP; see for example [40].

Proof of Theorem 2.4, part 2. In the proof of part 2 of Theorem 2.3, we have shown that Th(Q; SFQ) is

not strong and is k-independent for all k > 0, so the corresponding conclusions for Th(Q;<,SFQ) also

follow. It remains to show that Th(Q;<,SFQ) has NTP2. The proof is essentially the same as the proof

that Th(Q; SFQ) is simple, but with extra complications coming from the ordering. By Proposition 2.8 and

Corollary 3.5, we can replace Th(Q;<,SFQ) with OSF∗
Q. Towards a contradiction, assume that there is a

formula φ(x, y) witnessing TP2 (see [18, pp. 700-701]). We can arrange that φ(x, y) is quantifier-free by

Theorem 3.4. Disjunctions of formulas with NTP2 again have NTP2[18, p. 701], so using Lemma 3.2 we can

arrange that φ(x, y) is of the form

ρ(y) ∧ λ(x, y) ∧ ψ(x, t(y), t′(y))

where ρ(y) is a quantifier-free L∗
ou-formula, λ(x, y) an order condition, ψ(x, z, z′) a special formula, and t(y)

and t′(y) are tuples of L∗
ou-terms with length n and n′ respectively. Then there is b ∈ Gk with k = |y| and an

array (σij)i∈ω,j∈ω of L∗
ou-automorphisms of (G;<,U G,PG) with the following properties:

1. for all i ∈ ω, {φ(x, σij(b)) : j ∈ ω} is inconsistent;

2. for all f : ω → ω, {φ(x, σif(i)(b)) : i ∈ ω} is consistent;

3. for all i ∈ ω, (σij(b))j∈ω is indiscernible over {σi′j(b) : i′ ∈ ω, i′ ̸= i, j ∈ ω};

4. the sequence of “rows” ((σij(b))j∈ω)i∈ω is indiscernible.

We could get b, ω, and (σij)i∈ω,j∈ω as above from the definition of NTP2, Ramsey arguments, and the

monstrosity of (G;U G,PG); see also [18, p. 697] for the type of argument we need to get (3).

We deduce that the set {φ(x, σijb) : j ∈ ω} is consistent for all i ∈ ω, which is the desired contradiction.

We get from (2) that ρ(σijb) holds for all i ∈ ω and j ∈ ω. Hence, it suffices to show for all i ∈ ω that

{λ(x, σijb) ∧ ψ(x, t(σijb), t′(σijb)) : j ∈ ω} is consistent.
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The order condition λ(x, y) has NIP by Lemma 3.12, and so it has NTP2. Using conditions (2-4), we get that

{λ(x, σij(b)) : j ∈ ω} is consistent for all i ∈ ω.

Hence, any finite conjunction from {λ(x, σij(b)) : j ∈ ω} contains an open interval for all i ∈ ω. For i ∈ ω
and a finite ∆ ⊆ ω, set

θi,∆(x) :=
∧
j∈∆

ψ
(
x, t(σij(b)), t

′(σij(b))
)
.

It suffices to show that θi,∆(x) defines a non-empty set in every non-empty G-interval.

We have that θi,∆(x) is a conjunction of G-system given by the same special formula, and so is again

a G-system. By the genericity of OSF∗
Q, the problem reduces to showing θi,∆(x) is nontrivial and locally

satisfiable. By (2), φ(x, b) is consistent, and so is ψ(x, t(b), t′(b)). This implies in particular that t(b) and

t′(b) have no common components. It then follows from (3) that for i ∈ ω and distinct j, j′ ∈ ω,

t(σij(b)) and t
′(σij′(b)) have no common elements.

Hence, θi,∆(x) is nontrivial for all i ∈ ω. Let ψp(x, z, z
′) be the associated p-condition of ψ(x, z, z′). We

then get from (2) that {ψp(x, σif(i)(b)) : i ∈ ω} is consistent for all f : ω → ω. By Lemma 3.11, the formula

ψp(x, t(y), t
′(y)) is stable and hence has NTP2. It follows that for all but finitely many i ∈ ω the set

{ψp
(
x, t(σij(b)), t

′(σij(b))
)
: j ∈ ω} is consistent.

Combining with (4), we get that θi,∆(x) is p-satisfiable for all p which completes the proof.

Corollary 3.13. The set Z is not definable in (Q;<,SFQ).

Proof. Towards a contradiction, suppose Z is definable in (Q;<,SFQ). Then by Theorem 2.2, (N; +,×, <, 0, 1)
is interpretable in (Q;<,SFQ). It then follows from Theorem 2.4 that (N; +,×, <, 0, 1) has NTP2, but this is

well-known to be false.
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Part II

On the Pila-Wilkie Theorem
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CHAPTER 4

Background

This part of the thesis we provide a full exposition of the Pila-Wilkie Counting theorem following the original

paper [53], but exploit cell decomposition more thoroughly to simplify the deduction from its main ingredients.

Chapter 4 consists of all the model theory required in the later chapters. In Chapter 5, we state the

Counting theorem, and include our simplified proof modulo the two main ingredients.

Chapter 6 covers the first of these intermediate results, a Pila and Bombieri type interpolation, and has as

such nothing to do with the theory of o-minimal structures. The other ingredient is an o-minimal analogue

of the Yomdin-Gromov theorem, and is the technically most demanding. Taking ideas from Binyamini and

Novikov [15] we do it more directly in Chapter 7 than in the original paper.

In Chapter 8, we obtain two generalizations of the Counting theorem due to Pila [51], one where instead

of rational points we count points with coordinates in a Q-linear subspace of R with a finite bound on its

dimension, and one where instead we count points with coordinates that are algebraic of at most a given

degree over Q. The general approach is as in [51], but the technical details seem to us a bit simpler.

4.1 Notations and Conventions

Throughout this part of the thesis, d, e, k, l,m, n ∈ N = {0, 1, 2, . . . }, and ε, c,K ∈ R> := {t ∈ R : t > 0}.
For α = (α1, . . . , αm) ∈ Nm we set |α| := α1 + · · · + αm, and given a field k (often k = R) we set

xα := xα1
1 · · ·xαm

m for the usual coordinate functions x1, . . . , xm on km, and likewise aα := aα1
1 · · · aαm

m for

any point a = (a1, . . . , am) ∈ km. Let U ⊆ Rm be open. For a function f : U → R of class Ck and α ∈ Nm,
|α| ⩽ k,

f (α) :=
∂|α|

∂xα
f

denotes the corresponding partial derivative of order α. We extend this to Ck-maps f = (f1, . . . , fn) : U → Rn,

f (α) := (f
(α)
1 , . . . , f (α)n ) : U → Rn

for α as before. This includes the case m = 0, where R0 has just one point and any map f : U → Rn

is of class Ck for all k, with f (α) = f for the unique α ∈ N0. For a1, . . . , an ∈ R⩾ := {t ∈ R : t ⩾ 0}
the number max{a1, . . . , an} ∈ R⩾ equals 0 by convention if n = 0. For a = (a1, . . . , an) ∈ Rn we set

|a| := max{|a1|, . . . , |an|} in R⩾; this conflicts with our notation |α| for α ∈ Nn, but in practice no confusion

will arise. We also use these notational conventions when instead of R we have any o-minimal field with U

and f definable in it. The rest of this chapter is devoted to basic facts concerning o-minimality, definability,

and basic model theory.
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4.2 O-minimal fields

O-minimality as a subject started in [25] and [55]. We give the key definitions in full detail, with examples,

but state most results without proof. These proofs are in [28] as to general facts about o-minimal fields and

the semialgebraic case, and in [11, 26, 32, 31, 58, 63] as to specific examples beyond the semialgebraic case.

This section covers all the model theoretic background required for this part of the thesis; with the

exception of Section 7.4, which requires some model-theoretic compactness, alias saturation, which is fully

exposed in Section 4.3.

Structures. Let M be a nonempty set. We consider the finite cartesian powers

Mn := {a = (a1, . . . , an) : a1, . . . , an ∈M},

identifying in the usual way M1 with M and Mm+n with Mm×Mn. A structure on M is a sequence S=(Sn)
such that for all n,

1. Sn is a boolean algebra of subsets of Mn, that is, all X ∈ Sn are subsets of Mn, Mn ∈ Sn, and for all

X,Y ∈ Sn also X ∪ Y,X ∩ Y,X \ Y ∈ Sn.

2. For n ⩾ 2 and 1 ⩽ i < j ⩽ n the diagonal {a ∈Mn : ai = aj} ∈ Sn.

3. If X ∈ Sn, then M ×X ∈ Sn+1 and X ×M ∈ Sn+1.

4. If X ∈ Sn+1, then π(X) ∈ Sn, where π :Mn+1 →Mn is the projection map given by

π(a1, . . . , an, an+1) = (a1, . . . , an).

Let S be a structure on M . The definition of “structure” lacks symmetry, but in fact, if X ∈ Sn and σ is a

permutation of {1, . . . , n}, then

{
(
aσ(1), . . . , aσ(n)

)
: a = (a1, . . . , an) ∈ X} ∈ Sn.

Given a map f : X → Mn with X ⊆ Mm, we say that f belongs to S (or S contains f) if its graph, as a

subset of Mm+n, belongs to Sm+n; in that case X ∈ Sm, f(X) ∈ Sn, f−1(Y ) ∈ Sm for every Y ∈ Sn, and
the restriction f |X0 : X0 → Rn belongs to S for every X0 ⊆ X in Sm. If f : X → Mn and g : Y → M l

belong to S, where X ⊆ Mm and Y ⊆ Mn, then the composition g ◦ f : X ∩ f−1(Y ) → M l belongs to S.
The class of all structures on M is partially ordered by ⊆:

S ⊆ S ′ :⇐⇒ Sn ⊆ S ′n for all n.

Any collection C of sets X ⊆Mn for various n gives rise to the least structure S on M that contains every

X ∈ C, where “least” is with respect to ⊆.

Ordered fields. Let R be an ordered field: a field with a (strict) total order < on its underlying set such

that for all a, b, c ∈ R we have

a < b⇒ a+ c < b+ c, a < b, 0 < c⇒ ac < bc.
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The case to keep in mind is the field R of real numbers with its usual ordering, but in Chapter 7 we work

in bigger ambient ordered fields, since results in that setting have consequences for R that are less easy to

obtain otherwise. (This is where model theory comes into play.) The ordered field Q of rational numbers

embeds uniquely into R as an ordered field. We use also the signs ⩽, >,⩾ with the usual meaning derived

from <, and set R> := {a ∈ R : a > 0}, R⩾ := {a ∈ R : a ⩾ 0}. For a ∈ R we set |a| := a if a ⩾ 0 and

|a| := −a if a ⩽ 0. For a = (a1, . . . , an) ∈ Rn we set |a| := max(|a1|, . . . , |an|) ∈ R⩾, which by convention

equals 0 if n = 0.

An interval in R is a set (a, b) := {x ∈ R : a < x < b}, where a, b ∈ R∞ := R ∪ {−∞,∞}, a < b,

where we extend < to a total ordering on R∞ by −∞ < x <∞ for all x ∈ R. For a ⩽ b in R∞ we also set

[a, b] := {x ∈ R∞ : a ⩽ x ⩽ b}, but we do not call this an interval. We endow R with the order topology on

its underlying set: it has the collection of intervals as a basis, and is a hausdorff topology. We also equip Rn

with the corresponding product topology.

We call R real closed if R> = {b2 : 0 ̸= b ∈ R} and every polynomial p(x) ∈ R[x] of odd degree has a

zero in R. (This is equivalent to the field R[i] with i2 = −1 being algebraically closed.) In particular, the

ordered field R of real numbers is real closed, and in some precise sense, all real closed fields have the same

elementary properties as R (Tarski); we do not explicitly use that fact. Here and below R denotes the ordered

field of real numbers, not just the set of real numbers.

O-Minimal Structures. Let R again be an ordered field. A structure on R is a structure S on its

underlying set such that

(5) {(a, b) ∈ R2 : a < b} ∈ S2 and the graphs of +, · : R2 → R lie in S3.

Let S be a structure on R with {a} ∈ S1 for all a ∈ R. Then every interval is in S1, for every polynomial

p ∈ R[x1, . . . , xn] the corresponding function a 7→ p(a) : Rn → R belongs to S, and so Sn contains the sets

{a ∈ Rn : p(a) = 0} and {a ∈ Rn : p(a) > 0}.

For real closed R, a semialgebraic subset of Rn is a finite union of sets

{a ∈ Rn : p(a) = 0, q1(a) > 0, . . . , qm(a) > 0}, (p, q1, . . . , qm ∈ R[x1, . . . , xn]),

and setting Sn := {semialgebraic subsets of Rn} gives by the Tarski-Seidenberg theorem a structure S = (Sn)
on the ordered field R. This is the least structure on R containing {a} for all a ∈ R. In this case S1 contains

exactly the finite unions of the sets {a} with a ∈ R and intervals. This fact about S1 is a surprisingly strong

minimality property of S which we now axiomatize:

An o-minimal structure on R is a structure on the ordered field R such that

(6) {a} ∈ S1 for every a ∈ R and every element of S1 is a finite union of one-element subsets of R and

intervals.

One can show that R must be real closed if there is an o-minimal structure on it. The theory of o-minimal

structures is a wide ranging generalization of the older subject of semialgebraic sets, and much of the tame

properties of semialgebraic sets go through for the sets belonging to an o-minimal structure, as we shall see.

The significance of o-minimality for applications is largely due to the fact that there are interesting o-minimal
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structures on R beyond its structure of semialgebraic sets. The important examples below are by way of

illustration; the general facts about o-minimal structures that we focus on in this section do not depend on

the nontrivial theorems that establish the o-minimality of these examples.

Terminology: an o-minimal field is an ordered field equipped with an o-minimal structure on it (and this

ordered field is then real closed). We let Salg be the o-minimal structure on R consisting of the semialgebraic

subsets of Rn, for all n. The first examples of o-minimal fields beyond the semialgebraic case are:

(i) Ran: this is R equipped with the smallest structure San on it that contains every f : [−1, 1]n → R that

extends to a real analytic function U → R on some open neighborhood U ⊆ Rn of [−1, 1]n, for n = 0, 1, 2, . . . .

A set X ⊆ Rn belongs to San iff X is subanalytic in the larger (compact) real analytic manifold P(R)n, where
P(R) = R ∪ {∞} is the real projective line. The study of Ran is essentially the theory of subanalytic sets due

to Hironaka and Gabrielov: see [11, 26].

(ii) Rexp: this is R with the smallest structure Sexp on it containing {r} for all r ∈ R, and the function

exp : R → R, exp(r) := er. A set X ⊆ Rm belongs to Sexp iff X = π
(
{a ∈ Rn : P (a, ea) = 0}

)
for some

n ⩾ m and some polynomial P ∈ R[x1, . . . , xn, y1, . . . , yn], where ea := (ea1 , . . . , ean) and π : Rn → Rm is

given by π(a) = (a1, . . . , am) for a = (a1, . . . , an) ∈ Rn. This characterization of Sexp is part of Wilkie’s

theorem in [63].

(iii) For applications in arithmetic algebraic geometry it is important that we can amalgamate (i) and (ii) into

an o-minimal field Ran,exp: this is R with the smallest structure San,exp on it such that San,exp ⊇ San,Sexp.
A characterization of San,exp in the style of (ii) is in [32], and a sharper one in [31] where also the description

of San in (i) is improved.

In general, amalgamation as in Example (iii) does not preserve o-minimality: [58] describes two o-minimal

structures S1 and S2 on R for which the smallest structure S on R with S ⊇ S1,S2 is not o-minimal.

As to the appearance of exponentiation in the examples above, [47] proves a striking dichotomy: for any

o-minimal structure S on R, either exp belongs to S, or every function R→ R belonging to S is polynomially

bounded, as t→∞. It is not known if there exists an o-minimal structures S on R with a function R→ R
belonging to it that grows faster, as t→∞, than any finite iterate of the exponential function.

One way that o-minimality can fail (very badly) for a structure S on R with {a} ∈ S1 for all a ∈ R is that

Z ∈ S1: one can show that then all closed subsets of all Rn belong to S, and even the Lebesgue-measurability

of certain sets in S cannot be settled without unorthodox set-theoretic axioms. In particular, the sine function

on R cannot belong to any o-minimal structure on R, although its restriction to any bounded interval belongs

to the o-minimal structure San on R.

Definable Sets. In the rest of this section we fix an o-minimal field R. Its underlying real closed ordered

field is also denoted by R. For a set X ⊆ Rm we call X definable if X belongs to the given o-minimal

structure of R, and likewise for maps X → Rn. (This use of the term “definable” has its origin in logic, for

which see Section 4.3.) In case the given o-minimal structure on R consists just of the semialgebraic sets (in

the sense of the real closed field R), we write semialgebraic in place of definable.

Topological notions like openness and continuity are with respect to the order topology on R and the

corresponding product topology on each Rn. If X ⊆ Rn is definable, then so are its closure cl(X) and its

interior int(X) in Rn. The definable homeomorphism t 7→ t
1+|t| : R→ (−1, 1) extends to an order preserving

bijection R∞ → [−1, 1] sending −∞ to −1 and ∞ to 1, and we equip R∞ with the (hausdorff) topology on it

making this bijection into a homeomorphism.
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Till further notice the results below are from [28, Chapter 3], where the o-minimal structures considered

are more general, with just an underlying nonempty totally ordered set without least or greatest element and

such that for any two distinct elements a < b there is an x with a < x < b, no field operations being included.

Here is the key fact about univariate definable functions:

Theorem 4.1 (Monotonicity Theorem). Let I = (a, b) be an interval and let f : (a, b) → R be definable.

Then f has the following properties:

(i) there are points a = a0 < a1 < · · · < an < an+1 = b such that on each subinterval (aj , aj+1) with

0 ⩽ j ⩽ n the function f is continuous, and either strictly decreasing, or constant, or strictly increasing.

(ii) if f is continuous and f(p) < c < f(q) with p < q in I, then c = f(x) for some x ∈ (p, q). (Intermediate

Value Property.)

(iii) limt↓a f(t) and limt↑b f(t) exists in R∞.

Of course, the intermediate value property (ii) is automatic when the underlying ordered field is R and

then requires no definability assumption. In the o-minimal setting, and certainly outside the familiar real

environment, we confine attention to definable objects. For example, the correct analogue of “connected” is as

follows: a definable set X ⊆ Rm is said to be definably connected if there are no disjoint nonempty definable

open subsets X0, X1 of X with X = X0 ∪X1. For such X and any definable continuous map f : X → Rn,

the image f(X) ⊆ Rn is also definably connected. Intervals are definably connected.

Cells. Towards partitioning an arbitrary definable set X ⊆ Rn into finitely many nice pieces we introduce

cells. These are definably connected sets of a form that makes them suited to proofs by induction (on n, for

cells in Rn). First some notation. Let X ⊆ Rn be definable. Set

C(X) := {f : X → R : f is definable and continuous},

C∞(X) := C(X) ∪ {−∞,∞},

where −∞ and ∞ are viewed as constant functions on X. Let f, g ∈ C∞(X), and suppose f < g, that is,

f(x) < g(x) for all x ∈ X. Then we set

(f, g) = (f, g)X := {(x, r) ∈ X ×R : f(x) < r < g(x)},

so (f, g) ⊆ Rn+1 is definable; see next picture.

Γ(g)

Γ(f)

(f, g)X

X
Rn

R
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Let n ⩾ 1 and (i1, . . . , in) a sequence of zeros and ones. An (i1, . . . , in)-cell is a definable subset of Rn

obtained via the following recursion:

(i) Case n = 1: a (0)-cell is a one-element subset of R, a (1)-cell is an interval;

(ii) An (i1, . . . , in, 0)-cell is the graph Γ(f) of a function f ∈ C(X) on an (i1, . . . , in)-cell X; an (i1, . . . , in, 1)-

cell is a set (f, g)X with f, g ∈ C∞(X), f < g, and X an (i1, . . . , in)-cell.

A cell in Rn is an i-cell, for some (necessarily unique) i = (i1, . . . , in) ∈ {0, 1}n. A cell in Rn is definably

connected, and locally closed (open in its closure in Rn). A cell in Rn is open in Rn (and called an open cell)

iff it is a (1, . . . , 1)-cell.

Important in Section 5.2 and Chapter 8 is that every cell is homeomorphic under a coordinate projection

to an open cell. In detail, let C ⊆ Rn be an i-cell, i = (i1, . . . , in). Let λ(1) < · · · < λ(k) be the indices

λ ∈ {1, . . . , n} with iλ = 1, and consider the (definable) coordinate projection pi : R
n → Rk given by

pi(x1, . . . , xn) = (xλ(1), . . . , xλ(k)).

Then pi maps C homeomorphically onto an open cell in Rk. We denote this open cell pi(C) also by p(C)

and the homeomorphism pi|C : C → p(C) by pC .

Cell Decomposition. Let n ⩾ 1. A decomposition of Rn is a partition of Rn into finitely many cells,

obtained by the following recursion:

(i) case n = 1: points a1 < · · · < am in R determine a decomposition of R = R1 consisting of

(−∞, a1), {a1}, (a1, a2), . . . , (am−1, am), {am}, (am,∞).

(ii) a decomposition D of Rn+1 is a finite partition of Rn+1 into cells such that π(D) := {π(C) : C ∈ D} is
a decomposition of Rn, where π : Rn+1 → Rn is the projection map given by π(x1, . . . , xn, xn+1) =

(x1, . . . , xn).

With X(1), . . . , X(k) the distinct cells of a decomposition D of Rn, let functions fi1 < · · · < fimi
in C(Xi)

be given for i = 1, . . . , k. Then

Di = {(−∞, fi1),Γ(fi1), (fi1, fi2), . . . ,Γ(fimi
), (fimi

,∞)}

is a partition of X(i) × R, and D∗ = D1 ∪ · · · ∪ Dk is a decomposition of Rn+1 with D = π(D∗). See the

figure below. Every decomposition of Rn+1 is obtained in this manner from a decomposition of Rn.

Γ(fi2)

Γ(fi1)

Γ(fi3)

· · · · · ·
X(i)

Rn

R
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In these definitions of cell and decomposition we assumed n ⩾ 1, but it is convenient to also consider the

one-point set R0 as the unique cell in R0, namely as an i-cell where i ∈ {0, 1}0 is the empty tuple of zeros

and ones, and {R0} as the unique decomposition of R0. In this way clause (i) in these definitions appears as

the case n = 0 of the corresponding clause (ii). So below we allow n = 0.

A decomposition D of Rn is said to partition a set X ⊆ Rn if each cell in D is either contained in X

or disjoint from X (so X is a union of cells in D). We can now state the fundamental Cell Decomposition

Theorem:

Theorem 4.2. For any definable X1, . . . , Xm ⊆ Rn some decomposition of Rn partitions X1, . . . , Xm. If

X ⊆ Rn and f : X → R are definable, then some decomposition D of Rn partitions X with continuous f |C
for all cells C ⊆ X in D.

Some consequences: if the definable set X ⊆ Rn is definably connected, then it is “definably path connected”:

for any points p, q ∈ X there is a definable continuous γ : [0, 1]→ X with γ(0) = p, γ(1) = q. If the underlying

ordered field of R is R, then for definable X ⊆ Rn, definably connected agrees with connected.

A definably connected component of a definable set X ⊆ Rn is a definably connected definable nonempty

subset of X that is maximal with respect to inclusion. (So if X = ∅, it has no definably connected components.)

Corollary 4.3. For definable X ⊆ Rn, the definably connected components of X are all open and closed in

X, and form a finite partition of X.

Definable families. Let E ⊆ Rm and X ⊆ E ×Rn ⊆ Rm+n be definable. For a ∈ E we set

X(a) := {x ∈ Rn : (a, x) ∈ X}.

We view X as describing the family
(
X(a)

)
a∈E of definable subsets of Rn. We call this a definable family,

and the sections X(a) are the members of the family.

Example. The hypersurfaces in R2 of degree at most 2 are the members of a semialgebraic family: such a

hypersurface is the set of solutions in R2 of an equation

a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6 = 0 with (a1, a2, a2, a4, a5, a6) ∈ R6 \ {0},

so here E = R6 \ {0} and X consists of the points (a1, a2, a2, a4, a5, a6, x, y) ∈ E ×R2 satisfying the above

equation. By the same token, for any n and d the hypersurfaces in Rn of degree ⩽ d are the members of a

semialgebraic family.

Let π : Rm+n → Rm be given by π(x1, . . . , xm+n) = (x1, . . . , xm).

Proposition 4.4. Suppose D is a decomposition of Rm+n partitioning X. Then for each a ∈ E,

D(a) := {C(a) : C ∈ D, a ∈ π(C)}

is a decomposition of Rn partitioning X(a). This gives in particular a finite bound on the number of definably

connected components of X(a) independent of a ∈ E.
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Dimension. This subsection is taken from [28, Chapter 4, section 1]. It is natural to assign to an

(i1, . . . , in)-cell C the dimension

dimC := i1 + · · ·+ in ∈ {0, . . . , n},

since p(i1,...,in) : R
n → Ri1+···+in is definable and maps C homeomorphically onto an open subset of Ri1+···+in .

Such C does not contain any (j1, . . . , jn)-cell with j1 + · · ·+ jn > dim(C). This fact allows us to extend the

above dimension to arbitrary nonempty definable X ⊆ Rn by

dimX := max{dimC : C ⊆ X is a cell} ∈ N.

We also set dim ∅ := −∞. Here are some basic facts on dimension:

Proposition 4.5. Let X ⊆ Rm be definable. Then:

(i) dimX = 0 ⇐⇒ X is finite and nonempty;

(ii) dimX = m ⇐⇒ X has nonempty interior in Rm;

(iii) if Y ⊆ Rm is definable, then dimX ∪ Y = max(dimX,dimY );

(iv) if Y ⊆ Rn is definable, then dimX × Y = dimX + dimY ;

(v) if f : X → Rn is definable, then dimX ⩾ dim f(X);

(vi) if f : X → Rn is definable and injective, then dimX = dim f(X);

(vii) if X ̸= ∅, then dim(cl(X) \X) < dimX.

In (v), (vi) we do not assume f is continuous. Here is a stronger version of (v):

Proposition 4.6. Let f : X → Rn be definable, X ⊆ Rm. For d ⩽ m, set

Y (d) := {y ∈ Rn : dim f−1(y) = d}.

Then Y (d) is definable and dimX = maxd⩽m d+ dimY (d).

We also have a local dimension: Let X ⊆ Rm be definable and a ∈ Rm. Then there is a definable neighborhood

V of a in Rm such that dim(X ∩ U) = dim(X ∩ V ) for all definable neighborhoods U ⊆ V of a in Rm; thus

dim(X ∩ V ) is independent of the choice of such V , and we set dimaX := dim(X ∩ V ) for such V .

Definable Compactness. This subsection and the next are from [28, Chapter 6, section 1]. The

ordinary notion of compactness from point set topology is useless in our setting, but we do have a good

substitute. Call a set X ⊆ Rm bounded if X ⊆ [−r, r]m for some r ∈ R>.

Proposition 4.7. If f : X → Rn is a continuous definable map on a closed and bounded (definable) set

X ⊆ Rm, then f(X) ⊆ Rn is also closed and bounded.

This has the expected consequences:

Corollary 4.8. If f : X → R is a continuous definable function on a nonempty closed bounded set X ⊆ Rm,

then f has a maximum and a minimum value on X.

Corollary 4.9. If f : X → Rn is an injective continuous definable map on a closed and bounded set X ⊆ Rm,

then f : X → f(X) is a homeomorphism.
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Definable Selection. For any interval (a, b) we can “definably” select a point in it: (a+ b)/2 if a, b ∈ R;
b− 1 if a = −∞ and b ∈ R; a+ 1 if a ∈ R and b =∞; 0 if a = −∞ and b =∞. This can be exploited to give

two very useful selection principles, the second a consequence of the first:

Proposition 4.10. Any definable equivalence relation on a definable set X ⊆ Rn has a definable set of

representatives, that is, a definable subset of X that has exactly one point in common with each equivalence

class. Any definable map f : X → Rn, X ⊆ Rm, has a definable right-inverse g : f(X) → X, that is,

f ◦ g = idf(X).

In these last two subsections we got to use the underlying additive group of R, but not yet its multiplication.

Accordingly this material goes through in the more general o-minimal setting of [28, Chapter 6] (not needed

for our purpose). We now turn to a topic where multiplication does come into play.

The rest of the section is from [28, Chapter 7].

Differentiability. In this subsection we don’t need o-minimality or definability, and R can be any

ordered field. The elementary facts stated here have the same proofs as for R = R. For a, b ∈ Rn we set

a · b := a1b1+ · · ·+anbn ∈ R (dot product). Let I ⊆ R be open. A map f : I → Rn is said to be differentiable

at a point a ∈ I with derivative b ∈ Rn if

lim
t→0

1

t

(
f(a+ t)− f(a)

)
= b.

In that case f is continuous at a and we set f ′(a) := b. If f, g : I → Rn are differentiable at a, then so are

f + g : I → Rn and f · g : I → R = R1, with

(f + g)′(a) = f ′(a) + g′(a), (f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a),

and if in addition n = 1, g is continuous, and g(a) ̸= 0, then f/g : I \ g−1(0)→ R is differentiable at a with

(f/g)′(a) =
(
f ′(a)g(a) − f(a)g′(a)

)
/g(a)2. Constant maps I → Rn are differentiable at every a ∈ I with

derivative 0 ∈ Rn, and the inclusion map I → R is differentiable at every a ∈ I with derivative 1 ∈ R.
Chain Rule: if f : I → R is continuous, differentiable at a ∈ I, and f(a) ∈ J with open J ⊆ R, and

g : J → R is differentiable at f(a), then g ◦ f : I ∩ f−1(J) → R is differentiable at a with (g ◦ f)′(a) =

g′(f(a)) · f ′(a).

Next we consider directional derivatives. We consider a map f : U → Rn with open U ⊆ Rm. For a point a ∈ U
and a vector v ∈ Rm we say that f is differentiable at a in the v-direction if the Rn-valued map t 7→ f(a+ tv)

(defined on an open neighborhood of 0 ∈ R) is differentiable at 0, that is, limt→0
1
t

(
f(a+ tv)− f(a)

)
exists

in Rn, in which case we set

daf(v) := lim
t→0

1

t

(
f(a+ tv)− f(a)

)
∈ Rn.

For the standard basis vectors e1, . . . , em of the R-linear space Rm we also write ∂f
∂xi

(a) for daf(ei).

Let a ∈ U and let T : Rm → Rn be an R-linear map. We call f differentiable at a with differential T if for

every ε ∈ R> we have, for all sufficiently small v ∈ Rm,

|f(a+ v)− f(a)− T (v)| ⩽ ε|v|.
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Then f is continuous at a and T is uniquely determined by f, a, so we can set daf := T , a notation consistent

with that for directional derivatives: for each vector v ∈ Rm the map f is differentiable at a in the v-direction

with daf(v) = T (v) where daf(v) denotes the directional derivative defined earlier. For m = 1 this notion of

differentiability at a agrees with the one defined earlier, with daf(1) = f ′(a).

The map f = (f1, . . . , fn) : U → Rn is differentiable at a iff f1, . . . , fn : U → R are differentiable at a.

In that case all partials
(
∂fi/∂xj

)
(a) exist and the n ×m matrix

(
∂fi/∂xj

)
(a) is the matrix of daf with

respect to the standard basis vectors of Rm and Rn. Each R-linear map Rm → Rn is differentiable at each

point of Rm with itself as differential. If the maps f, g : U → Rn are differentiable at a ∈ U , then f + g and

cf for c ∈ R are differentiable at a with

da(f + g) = daf + dag, dacf = c · daf.

Chain Rule: Suppose U ⊆ Rm, V ⊆ Rn are open, a ∈ U , f : U → Rn is continuous, f is differentiable at

the point a ∈ U , f(a) ∈ V , and g : V → Rl is differentiable at f(a). Then g ◦ f : U ∩ f−1(V ) → Rl is

differentiable at a, and

da(g ◦ f) =
(
df(a)g

)
◦ daf.

Preserving Definability and the Mean Value Theorem. We now revert to the setting where

R is an o-minimal field and our sets and maps are definable. So let U ⊆ Rm be open and definable, and let

f : U → Rn be definable. Then the set Df of points (a, v) in U ×Rm ⊆ R2m such that f is differentiable at

a in the v-direction is definable, and so is the map (a, v) 7→ daf(v) : Df → Rn.

Lemma 4.11. Let a < b in R, and suppose f : [a, b]→ R is definable and continuous, and differentiable at

each point of (a, b). Then there is c ∈ (a, b) with

f(b)− f(a) = f ′(c) · (b− a).

This “mean value” lemma opens the door to continuous differentiability. Let

f = (f1, . . . , fn) : U → Rn

be a definable map on a (definable) open set U ⊆ Rm. We say that f is of class C1 (or just C1) if f

is differentiable at every point a ∈ U in the directions e1, . . . , em, and the resulting (definable) functions
∂f
∂x1

, . . . , ∂f
∂xm

: U → Rn are continuous. In the next lemma we take matrices with respect to the standard

bases of Rm and Rn.

Lemma 4.12. If f is C1, then f is differentiable at each point of U and

a 7→ matrix of daf : U → Rn×m

is continuous. Conversely, if f is differentiable at each point of U and the above matrix-valued map is

continuous, then f is a C1-map.

For an R-linear map T : Rm → Rn we put |T | := max{|Ta| : |a| ⩽ 1, a ∈ Rm}. (The maximum exists in R

since T is definable and continuous.) Thus |Ta| ⩽ |T | · |a| for all a ∈ Rm. Now we can state an extended

mean value result:
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Lemma 4.13. Suppose f : U → Rn is of class C1, and a, b ∈ U are such that the line segment [a, b] :=

{(1− t)a+ tb : 0 ⩽ t ⩽ 1} is contained in U . Then

|f(b)− f(a)| ⩽ |b− a| · max
y∈[a,b]

|dyf |.

Smooth Cell Decomposition. It is convenient to extend the notions of C1-map and C1-cell. We say

that a definable map f : X → Rn, X ⊆ Rm, is C1 if there are a definable open U ⊆ Rm such that X ⊆ U ,
and a definable C1-map F : U → Rn such that f = F |X . We define C1-cells as in the recursive definition for

cells, except that we require the (definable) functions f and g there, when R-valued, to be C1 instead of just

being continuous.

Every inclusion map X → Rm for definable X ⊆ Rm is C1. If the definable map f : X → Rn with

X ⊆ Rm is C1 and the definable map g : Y → Rl with Y ⊆ Rn is C1, then g ◦ f : f−1(Y )→ Rl is C1. For

definable f = (f1, . . . , fn) : X → Rn with X ⊆ Rm, f is C1 iff f1, . . . , fn are C1.

The following is a C1-version of cell decomposition.

Theorem 4.14. For any definable X1, . . . , Xm ⊆ Rn there is a decomposition of Rn into C1-cells partitioning

X1, . . . , Xm. If X ⊆ Rn and f : X → R are definable, then there is a decomposition of Rn into C1-cells

which partitions X such that f |C is C1 for each cell C ⊆ X of the decomposition.

Ck-maps. Let k ⩾ 1 below. Let f = (f1, . . . , fn) : U → Rn be definable, with (definable) open U ⊆ Rm.
By recursion on k we specify what it means for f to be a Ck-map. For k = 1 this has been defined earlier,

and for k > 1 we say that f is Ck if f is C1 and every partial ∂fi/∂xj : U → R (1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m) is

Ck−1.

We also extend being Ck to definable maps f : X → Rn with X ⊆ Rm not necessarily open, just as we

did for k = 1, and likewise we define the notion of a Ck-cell just like we did for k = 1. The remarks we made

above about this extended notion of definable C1-map go through when “C1” is replaced by “Ck” everywhere.

The C1-cell decomposition theorem goes through with “C1” replaced by “Ck” everywhere.

Semialgebraic Functions. We finish this section with some facts on real semialgebraic functions, and

use this to determine the algebraic part of the set

X = {(a, b, c) ∈ R3 : 1 < a, b < 2, c = ab} ⊆ R3

of the Example in Section 5.1.

Let f : I → R be a continuous function on an interval I ⊆ R. Then f is semialgebraic (that is, its graph

as a subset of R2 is semialgebraic) iff for some nonzero polynomial P ∈ R[x, y] we have P
(
t, f(t)

)
= 0 for all

t ∈ I. (See [28, Chapter 2] for a detailed treatment of real semialgebraic sets and functions, in particular

Exercise 3 in (3.7) there, with Hint on p. 169.) Thus if f is real analytic, and its restriction to some

subinterval of I is semialgebraic, then f is semialgebraic.

Suppose f is semialgebraic and I = (0, b) with b ∈ (0,∞]. Then either f(t) = 0 for all sufficiently small

t > 0, or for some q ∈ Q and c ∈ R× we have f(t)/tq → c as t ↓ 0. (See for example the end of [26].)

Combining these facts we see that the following real analytic functions on (0,∞) cannot be semialgebraic on

any subinterval of (0,∞): for r ∈ R \Q the function t 7→ tr; for a ∈ (1,∞) the function t 7→ at; the function

t 7→ log t.
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By semialgebraic cell decomposition the algebraic part Y alg of any set Y ⊆ Rn is the union of the sets

cl(C)∩Y with C ⊆ Y a 1-dimensional semialgebraic cell. We can now prove the fact stated in the Introduction

for the above X ⊆ R3 that

Xalg :=
⋃

q∈Q∩(1,2)

Xq.

The inclusion ⊇ is clear. The sets Xq (q ∈ Q∩(1, 2)) are closed in X, so given any 1-dimensional semialgebraic

cell C ⊆ X it suffices to show that C ⊆ Xq for some q ∈ Q ∩ (1, 2). Now C is a (0, 0, 1)-cell, or a (0, 1, 0)-cell,

or a (1, 0, 0)-cell. But X does not contain any (0, 0, 1)-cell. Also C cannot be a (0, 1, 0)-cell: if it were, then

for a fixed a ∈ (1, 2) and an interval I ⊆ (1, 2) the function t 7→ at on I would be semialgebraic, which is

false. Finally, suppose C is a (1, 0, 0)-cell. Then C = {
(
t, f(t), tf(t)

)
: t ∈ I} where f : I → R is a continuous

semialgebraic function on an interval I ⊆ (1, 2) (and t 7→ tf(t) : I → R is also semialgebraic). Consider any

interval J ⊆ I on which f is of class C1. Then taking the logarithmic derivative of t 7→ tf(t) = ef(t) log t on J

gives that f ′(t) log t+ f(t)/t is semialgebraic as a function of t ∈ J , and so f ′ = 0 on J . Using several such J

we see that f is constant on I. This constant value must be a rational q ∈ (1, 2), so C ⊆ Xq.

4.3 Some model theory

In Section 7.4 we use the notion of an ℵ0-saturated elementary extension, requiring a little excursion into

model theory. We shall give precise definitions of the necessary model-theoretic notions, motivating them

by examples, and stating carefully a few needed results. For most proofs we refer to [2, Appendix B]; there

the basics of model theory are developed in the setting of many-sorted structures, while here we stay with

one-sorted structures (which have only one underlying set, while a many-sorted structure has a family of

underlying sets). We end this section with a detailed explanation of the deployment of saturation in Chapter 7.

A language is a set L whose elements are called symbols, each symbol s ∈ L being equipped with a natural

number arity(s) ∈ N. These symbols are either relation symbols or function symbols, and L is the disjoint

union of Lr, its subset of relation symbols, and Lf , its subset of function symbols.

Below L is a language. LetM be an L-structure, that is, a triple

M =
(
M ; (RM)R∈Lr , (FM)F∈Lf

)
consisting of a nonempty set M , an m-ary relation RM ⊆ Mm on M for each R ∈ Lr of arity m, and an

n-ary function FM : Mn → M on M for each F ∈ Lf of arity n. We call M the underlying set ofM, we

think of a symbol R ∈ Lr as naming the corresponding relation RM on M , and likewise for F ∈ Lf .

Thus a nullary function symbol (also called a constant symbol) names a function M0 →M , to be identified

with its unique value in M , so a constant symbol names a distinguished element of M . Usually we drop

the superscriptsM in RM and FM whenM is understood from the context, the distinction between the

symbols and what they name to be kept in mind. We shall also feel free to denoteM and its underlying set

M by the same letter, when convenient. The reason we need the distinction between symbols and what they

name in a particular L-structure is that we have to be able to say that a statement expressed in terms of

these symbols holds in, say, two different L-structuresM and N .

We need to consider two (unrelated) ways of increasingM. The first is when L is a sublanguage of L′.

Then an L′-expansion ofM is an L′-structureM′ with the same underlying set asM and where the symbols

of L name the same relations and functions inM as inM′. We also say that thenM′ expands M.

43



Example. The language LOF of ordered fields has a binary relation symbol <, constant symbols 0 and

1, a unary function symbol −, and binary function symbols + and ·. Any ordered field K is viewed as

an LOF-structure by having < name the (strict) ordering of the field, and the function symbols name the

functions on K that these symbols traditionally denote. Thus an ordered field K expands its underlying field.

Equipping the ordered field R of real numbers with the exponential function exp : R→ R gives the expansion

Rexp of R. This is not exactly how we specified Rexp in Section 4.2, but the difference is immaterial: the two

descriptions lead to the same sets X ⊆ Rn being definable in Rexp, see below. For model-theoretic use we

take Rexp as the above expansion of R.

A second way: M is a substructure of N (or N is an extension of M); notation: M ⊆ N . This means:

N = (N ; . . . ) is an L-structure, M ⊆ N , RN ∩Mm = RM for m-ary R ∈ Lr, and FM(a) = FN (a) for n-ary

F ∈ Lf and a ∈Mn. For example, if K1 and K2 are ordered fields viewed as LOF-structures, K1 ⊆ K2 means

that K1 is an ordered subfield of K2 (so the ordering of K2 restricts to the ordering of K1).

The 0-definable (or absolutely definable) sets of M are the sets X ⊆ Mn for n = 0, 1, 2, . . . obtained

recursively as follows:

(D1) RM ⊆Mm for m-ary R ∈ Lr and graph(FM) ⊆Mn+1 for n-ary F ∈ Lf are 0-definable.

(D2) if X,Y ⊆Mn are 0-definable, then so are X ∪ Y and Mn \X;

(D3) if X ⊆Mn is 0-definable, then so are X ×M,M ×X ⊆Mn+1;

(D4) for any i < j in {1, . . . , n} the diagonal {(a1, . . . , an) : ai = aj} ⊆Mn is 0-definable;

(D5) ifX ⊆Mn+1 is 0-definable, then so is π(X) ⊆Mn, where π :Mn+1 →Mn is given by π(a1, . . . , an, an+1) =

(a1, . . . , an).

Thus the 0-definable sets X ⊆Mn are exactly those that belong to the smallest structure on M that contains

all sets RM with R ∈ Lr and all sets graph(FM) with F ∈ Lf . If X ⊆ Mn is a 0-definable set ofM and

the ambientM is clear from the context, we also just say that X is 0-definable. A map f : X →Mn with

X ⊆Mm is said to be 0-definable (inM) if its graph as a subset of Mm+n is 0-definable inM. In that case

its domain X is 0-definable and for every 0-definable X ′ ⊆ X its image f(X ′) ⊆Mn is 0-definable.

We need a notation system to describe 0-definable sets in a uniform way in varying L-structures. Towards

this we assume that in addition to the symbols of L we have an infinite set Var of symbols, called variables

(with Var disjoint from the language L and independent of L). Given a tuple x = (x1, . . . xm) of distinct

variables we define L-terms t in x recursively as follows: each xi with 1 ⩽ i ⩽ m is an L-term in x, and for

n-ary F ∈ Lf and L-terms t1, . . . , tn in x, the expression F (t1, . . . , tn) is an L-term in x. Formally, these

expressions are words on some alphabet together with the specification of the tuple x, but we prefer not to

go into detail on such syntactical matters. We let t(x) indicate a term t in x. An L-term t = t(x) names

in an obvious way a function tM : Mm → M , with xi naming the function (a1, . . . , am) 7→ ai : M
m → M .

Functions named by L-terms are 0-definable inM.

For example, when K is an ordered field, any L-term t in x = (x1, . . . , xm) names a function Km → K

given by a polynomial in Z[x1, . . . , xm], and each such polynomial function is named by an L-term in x.

(Different terms can name the same function: x+ (−x) and 0 are different as terms in the single variable x,

but name the same function K → K, which takes the constant value 0.)

Going back to our L-structureM we introduce for every element a ∈M a constant symbol a /∈ L as a name

for a, with a ̸= b for all a ≠ b in M . For every set A ⊆M we extend L to the language LA := L∪{a : a ∈ A},
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and expandM to the LA-structureMA with a naming a for a ∈ A. A set X ⊆Mn is said to be A-definable

(or definable over A) inM if X is 0-definable inMA. When A =M we just use write “definable” instead of

“M -definable”. A set X ⊆Mn is A-definable (inM) iff X = Y (a) for some 0-definable set Y ⊆Mm+n and

some a ∈ Am. (Here for Y ⊆Mm+n and a ∈Mm we set Y (a) := {b ∈Mn : (a, b) ∈ Y }.)

Examples. For an algebraically closed field k, viewed as an L-structure with L = {0, 1,−,+, ·} (the

language of rings), the subsets of kn definable in k are exactly the so-called constructible subsets of kn: the

finite unions of sets X \ Y with X,Y Zariski-closed subsets of kn. (This is basically the constructibility

theorem of Tarski-Chevalley: the image of a constructible subset of kn+1 in kn under the projection map

(a1, . . . , an+1) 7→ (a1, . . . , an) : k
n+1 → kn is constructible in kn.) The same holds with “A-definable” and

“A-constructible” instead of “definable” and “constructible” for any set A ⊆ k, where an A-constructible subset

of kn is a finite union of sets X \ Y with X,Y ⊆ kn given by the vanishing of polynomials in D[x1, . . . , xn]

where D is the subring of k generated by A.

For us the more relevant example is when K is an ordered real closed field. Then the subsets of Kn

definable in K are exactly the semialgebraic subsets of Kn, that is, the finite unions of sets (with f, g1, . . . , gm

ranging over K[x1, . . . , xn])

{a ∈ Kn : f(a) = 0, g1(a) > 0, . . . , gm(a) > 0}.

This is the Tarski-Seidenberg theorem (like the Tarski-Chevalley theorem, but with “semialgebraic” instead of

“constructible”). Requiring the polynomials f, g1, . . . , gm above to have coefficients in Z, we obtain likewise

exactly the subsets of Kn that are 0-definable in K.

Saturation. This notion functions as a kind of compactness for definable sets. Let κ be a cardinal. An

L-structureM is said to be κ-saturated if for every set A ⊆ M of cardinality < κ and any family (Xi) of

A-definable subsets of M with the finite intersection property we have
⋂
iXi ≠ ∅. (The finite intersection

property for (Xi) says that Xi1 ∩ · · · ∩Xin ̸= ∅ for all indices i1, . . . , in.) This property of families of definable

subsets of M is inherited by families of definable subsets of Mm for any m. One can indeed think of this

in terms of compactness: ifM is κ-saturated, then for A ⊆M of cardinality < κ, the A-definable subsets

of Mm are a basis for a topology on Mm, the A-topology, which makes Mm a compact hausdorff space in

which these A-definable sets are exactly the open-and-closed sets. We need this only for κ = ℵ0, which means

that in the definition above we restrict to finite A ⊆M . For κ = ℵ1 the restriction is to countable A ⊆M .

For example, any algebraically closed field of infinite transcendence degree over its prime field is ℵ0-
saturated, and the field C of complex numbers is even ℵ1-saturated. The ordered field R is not even

1-saturated, since
⋂
n(n,∞) = ∅. [The referee asked for an explicit example of an ℵ0-saturated elementary

extension of the ordered field of real numbers. An attractive example is the real closed ordered field of surreal

numbers of countable length, which is actually ℵ1-saturated; for surreal numbers, see Gonshor [38]. In this

connection we mention that a real closed ordered field R is ℵ1-saturated iff for all countable subsets A < B

of R (that is a < b for all a ∈ A and b ∈ B), there is a c ∈ R such that A < c < B.] Any finite structure (a

structure with finite underlying set) is κ-saturated for every κ.

Towards the study of a structureM of interest we can always pass to an ℵ1-saturated extension N with

the same elementary properties, do our work in N and then pass the information gained back toM. This

will be made precise below. To make sense of “the same elementary properties” we need a notation system

for definable sets. This is the reason for introducing formulas and sentences below.
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Formulas and sentences. Let y = (y1, . . . , yn) be a tuple of distinct variables. We define L-formulas

ϕ in y inductively as follows:

(i) The atomic L-formulas in y are the expressions

⊤, ⊥, R
(
t1, . . . , tm

)
, and t1 = t2

for m-ary R ∈ Lr and L-terms t1, . . . , tm in y, and L-terms t1, t2 in y.

(ii) Given any L-formulas ϕ and ψ in y, we have new L-formulas in y:

¬ϕ, ϕ ∨ ψ, and ϕ ∧ ψ.

(iii) Let ϕ be a formula in (y1, . . . , yi, z, yi+1, . . . , yn), where 0 ⩽ i ⩽ n and z

is a variable different from y1, . . . , yn; then

∃zϕ and ∀zϕ

are new L-formulas in y.

Formally, these formulas in y are words on a certain alphabet, together with the specification of the tuple y.

We also write ϕ(y) to indicate that we are dealing with a formula ϕ in y. Each L-formula ϕ = ϕ(y) names

(we also say: defines) a 0-definable set ϕM ⊆Mn: the atomic formulas ⊤ and ⊥ name the subsets Mn and ∅
of Mn, and the atomic formulas R(t1, . . . , tm) and t1 = t2 as above name the sets

{a ∈Mn : (tM1 (a), . . . , tMm (a)) ∈ RM} and {a ∈Mn : tM1 (a) = tM2 (a)},

and for L-formulas ϕ, ψ as above,

(¬ϕ)M =Mn \ ϕM, (ϕ ∨ ψ)M := ϕM ∪ ψM, (ϕ ∧ ψ)M = ϕM ∩ ψM,

and for an L-formula ϕ in (y1, . . . , yi, z, yi+1, . . . , yn) as above: (∃zϕ)M is the set

{(a1, . . . , an) ∈Mn : (a1, . . . , ai, b, ai+1, . . . , an) ∈ ϕM for some b ∈M},

that is, the image of ϕM ⊆Mn+1 under the projection map

(a1, . . . , ai, b, ai+1, . . . , an) 7→ (a1, . . . , an) :M
n+1 →Mn,

and (∀zϕ)M := (¬∃z¬ϕ)M, which equals the set

{(a1, . . . , an) ∈Mn : (a1, . . . , ai, b, ai+1, . . . , an) ∈ ϕM for every b ∈M}.

The 0-definable subsets of Mn are exactly the sets ϕM with ϕ an L-formula in y. Likewise for A ⊆M , the

A-definable subsets of Mn are exactly the sets ϕMA with ϕ an LA-formula in y, but for convenience we write

this also as ϕM.

The L-formulas ϕ in y = (y1, . . . , yn) with n = 0 have a special status and are called L-sentences, typically

denoted by σ. One can think of a sentence as making an assertion. Formally, a sentence σ names a set
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σM ⊆ M0, so it equals M0, in which case we say that σ is true in M (notation: M |= σ), or it is empty,

in which case we way that σ is false inM. For example, if L is the language of rings and x, y are distinct

variables, then the L-sentence ∀x∃y(x = y · y) is true in exactly those fields in which every element is a square.

Elementary extensions. An elementary extension of the L-structureM is an extension N ⊇M of

M such that the same LM -sentences are true inM and N (where of course for a ∈M the constant symbol

a names a in bothM and N ). Notation: M ≼ N . Here are two wellknown situations where this is the case:

any algebraically closed field is an elementary extension of any algebraically closed subfield, any real closed

field is an elementary extension of any real closed subfield.

SupposeM ≼ N . Then for any LM -formula ϕ = ϕ(x1, . . . , xn) we have ϕM = ϕN ∩Mn. Moreover, if

ψ = ψ(x1, . . . , xn) is a second LM -formula and ϕM = ψM, then ϕN = ψN , so a definable set X = ϕM ⊆Mn

(ofM) yields a definable set X(N ) = ϕN ⊆ Nn that does not depend on the choice of defining formula ϕ.

To profit from saturation and elementary extensions we use:

Proposition 4.15. Any L-structure has an ℵ1-saturated elementary extension.

Indeed, for any L-structure M and nonprincipal ultrafilter U on the set N, the ultrapower MN/U is an

ℵ1-saturated elementary extension ofM, whereM is identified with a substructure ofMN/U via the diagonal

embedding; this is a remark intended for those who know about ultrapowers. In Section 7.4 we only need

ℵ0-saturation instead of the stronger ℵ1-saturation.

Revisiting o-minimality. Let K be an expansion of an ordered field. Among the definable subsets

of K in this expansion are at least the open intervals (a, b)K with a < b in K ∪ {−∞,+∞}, and thus the

finite unions of such open intervals and singletons {a} with a ∈ K. We say that K is o-minimal if there are

no other subsets of K definable in this expansion. To see how this is related to the concept of o-minimality

considered in Section 4.2, let Defn(K) be the collection of sets X ⊆ Kn that are definable in this expansion

K. Note that then K is o-minimal if and only if the family
(
Defn(K)

)
is an o-minimal structure on the

underlying ordered field of K. In particular, if K is o-minimal, then the underlying ordered field of K is real

closed.

Lemma 4.16. If K is o-minimal, then so is any elementary extension of K.

Proof. Assume K is o-minimal, and K ≼ K∗, so the underlying ordered field of K∗ extends the underlying

ordered field of K. Let X ⊆ K∗ be definable. Then we have a definable set Y ⊆ Kn+1 and a point b ∈ (K∗)n

such that X = Y K
∗
(b). Take N ∈ N and cells C1, . . . , CN in Kn+1 such that Y = C1 ∪ · · · ∪ CN . Then for

every a ∈ Kn the set Y (a) is a union of at most N sets {c} with c ∈ K, and intervals of K. With K an

L-structure, this fact can be expressed by a certain LK-sentence being true in K, hence in K∗, which then

means in particular that X = Y K
∗
(b) is a union of at most N sets {c} with c ∈ K∗, and intervals of K∗.

Let K be o-minimal and K ≼ K∗. To each definable set X ⊆ Kn we associate the set X∗ := X(K∗) ⊆ (K∗)n,

which is definable (over K) in K∗. If C ⊆ Kn is an (i1, . . . , in)-cell in the sense of K, then C∗ ⊆ (K∗)n is an

(i1, . . . , in)-cell in the sense of K∗. It follows that for definable X ⊆ Kn we have dimX = dimX∗ where the

dimension on the left is in the sense of K, and the dimension on the right is in the sense of K∗.

In Section 4.2 and the rest of the chapters in this part of the thesis, we use the letter R to refer to an

o-minimal field, but in this section we used R to indicate a relation symbol. That is why in this section

we prefer the letter K when dealing with o-minimal expansions of ordered fields and o-minimal fields. The
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distinction between the two concepts (o-minimal expansion of an ordered field and o-minimal field) is often

immaterial: we saw that an o-minimal expansion K of an ordered field gives rise to an o-minimal field with

the same underlying ordered field and the same definable sets.

When considering elementary extensions and ℵ0-saturation, the distinction is significant: When referring

to an elementary extension of an o-minimal field we really mean an elementary extension of an o-minimal

expansion K of an ordered field, so K is then an L-structure for a suitable language L ⊇ LOF. Likewise

when referring to an o-minimal field as being ℵ0-saturated, we mean: an L-structure K that gives rise to this

o-minimal field is ℵ0-saturated.

How to use the above? This subsection is designed to help the reader understand the precise use

of saturation in Chapter 7. We first show how Theorem 7.1 follows from it being true when the ambient

o-minimal field is ℵ0-saturated. So let K be an o-minimal field, X ⊆ Km a strongly bounded definable set,

and k ⩾ 1; we need to show that X has a k-parametrization. We can assume X ̸= ∅, and set l := dimX.

Take N ∈ N such that X ⊆ [−N,N ]mK . As explained, K is viewed as an L-structure for a language L ⊇ LOF.

Fix an LK-formula ϕ(x), x = (x1, . . . , xm), such that X = ϕK . Take an ℵ0-saturated elementary extension

K∗ of K. Then K∗ is an o-minimal field and

X∗ = ϕK
∗
⊆ [−N,N ]mK∗

is strongly bounded, and so has a k-parametrization {f1, . . . , fM} (with respect to K∗), since Theorem 7.1

was established in Section 7.4 when the ambient o-minimal field is ℵ0-saturated. For µ = 1, . . . ,M we have

fµ : (0, 1)lK∗ → (K∗)m, so the graph of fµ is defined in K∗ by an LK∗ -formula ϕµ(b, v, x) with ϕµ = ϕµ(u, v, x)

an LK-formula, u = (u1, . . . , up), v = (v1, . . . , vl) and b ∈ (K∗)p (the same p and b for all µ, without loss of

generality). The fact that there exists b ∈ (K∗)p such that ϕ1(b, v, x), . . . , ϕM (b, v, x) define in K∗ the graphs

of functions of a k-parametrization of X∗ can be expressed by a certain LK -sentence ∃uθ(u) being true in K∗.

(This sentence is complicated but its construction is routine and just mimicks the definitions of the various

notions involved.) Hence this sentence ∃uθ(u) is also true in K, which then means that for some a ∈ Km the

formulas ϕ1(a, v, x), . . . , ϕM (a, v, x) define in K the graphs of functions of a k-parametrization of X.

In a very similar way Theorem 7.2 follows from the fact, established in Section 7.4, that it is true when the

ambient o-minimal field is ℵ0-saturated.

Next we explain the use of “ℵ0-saturation plus Definable Selection” in obtaining Corollary 7.17 as a consequence

of Corollary 7.16. (The other use of this device earlier in Section 7.4 is along the same lines. The argument

we give may seem lengthy, but such arguments are utterly routine in model theory and are therefore usually

not spelled out but left to the reader.)

We are now dealing with an o-minimal field K which is ℵ0-saturated when viewed as an L-structure

for suitable L ⊇ LOF as before. We are given d, k,m, n with k, n ⩾ 1 and definable E ⊆ Km and definable

Z ⊆ E × [−1, 1]n ⊆ Km+n with dimZ(s) = d for all s ∈ E. Take a finite A ⊆ K such that E and Z are

A-definable. Corollary 7.16 yields for every s ∈ E a definable Ck-map

f = (f1, . . . , fN ) : (0, 1)d → (Kn)N = KNn

with N = N(s) ∈ N depending on s, such that (i) and (ii) of that corollary hold for Φ := {f1, . . . , fN} and
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X(s) in the role of X. For each L-formula ϕ = ϕ(u, x, y),

u = (u1, . . . , uM ), x = (x1, . . . , xd), y = (y11, . . . , yNn)

with M,N ∈ N depending on ϕ we consider the A-definable set Eϕ ⊆ Km of all s ∈ E such that for some

b ∈ KM the LK-formula ϕ(b, x, y) defines the graph of a map f parametrizing X(s) as above. Since K is

ℵ0-saturated and E is covered by the sets Eϕ, it is covered by finitely many of them, say by Eϕ1
, . . . , Eϕe

,

ϕi = ϕi(u1, . . . , uM(i), x, y11, . . . , yN(i)n) (i = 1, . . . , e).

For i = 1, . . . , e, let E(i) be the definable set of all s ∈ E with s ∈ Eϕi and s /∈ Eϕj for 1 ⩽ j < i. Definable

selection then yields for such i a definable map

s 7→ bi(s) : E(i)→ KM(i)

such that for every s ∈ E(i) the LK-formula ϕi(bi(s), x, y) defines in K the graph of a Ck-map f : (0, 1)d →
(Kn)N(i) parametrizing X(s) as specified earlier. Now E is the disjoint union of E(1), . . . , E(e). Adding

suitable constant maps it is routine to obtain from this for N = maxiN(i) a definable set F ⊆ E×Kd×KNn

for which the conclusion of Corollary 7.17 holds.
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CHAPTER 5

The Pila-Wilkie Counting Theorem

5.1 The statement

First some notation needed to state the theorem. We define the multiplicative height function H : Q→ R by

H(ab ) := max(|a|, |b|) ∈ N⩾1 for coprime a, b ∈ Z, b ̸= 0. Thus H(0) = H(1) = H(−1) = 1, and for q ∈ Q we

have H(q) ⩾ 2 if q /∈ {0, 1,−1}, H(q) = H(−q), and H(q−1) = H(q) for q ̸= 0. For a = (a1, ..., an) ∈ Qn,

H(a) := max{H(a1), . . . ,H(an)} ∈ N.

Let X ⊆ Rn. We set X(Q) = X ∩ Qn. Throughout T ranges over real numbers ⩾ 1, and we set

X(Q, T ) := {a ∈ X(Q) : H(a) ⩽ T} be the (finite) set of rational points of X of height ⩽ T , and set

N(X,T ) := #X(Q, T ) ∈ N. The algebraic part of X, denoted by Xalg, is the union of the connected infinite

semialgebraic subsets of X. So for n ⩾ 1, the interior of X (in Rn) is part of Xalg.

Example. The set X := {(a, b, c) ∈ R3 : 1 < a, b < 2, c = ab} is definable in the o-minimal field Rexp.

(See the subsection “O-Minimal Structures” in Section 4.2 for Rexp.) For rational q ∈ (1, 2), we have a

semialgebraic curve

Xq := {(a, q, c) : c = aq} ⊆ X,

and Xalg is the union of those Xq (proved at the end of Section 4.2).

We also set

Xtr := X \Xalg (the transcendental part of X).

We can now state the Pila-Wilkie theorem, also called the Counting Theorem:

Theorem 5.1. Let X ⊆ Rn with n ⩾ 1 be definable in some o-minimal expansion of R. Then for all ε there

is a c such that for all T ,

N(Xtr, T ) ⩽ cT ε.

Roughly speaking, it says there are few rational points on the transcendental part of a set definable in an

o-minimal expansion of R: the number of such points grows slower than any power T ε with T bounding their

height. To apply the counting theorem one needs to describe Xalg in some useful way. This typically involves

Ax-Schanuel type transcendence results.

Note that Xtr(Q) = ∅ in the example above, so the theorem is trivial for this X. We shall include a

refinement, Theorem 5.8, which is nontrivial for this X.
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The proof of Theorem 5.1 depends on two intermediate results. The first of these has nothing to do

with o-minimality. To state it we define for k, n ⩾ 1 and X ⊆ Rn a strong k-parametrization of X to be a

Ck-map f : (0, 1)m → Rn, m < n, with image X, such that |f (α)(a)| ⩽ 1 for all α ∈ Nm with |α| ⩽ k and all

a ∈ (0, 1)m. We also define a hypersurface in Rn of degree ⩽ e to be the zeroset in Rn of a nonzero polynomial

in x = (x1, . . . , xn) over R of (total) degree ⩽ e. The first of these intermediate results is essentially due to

Pila and Bombieri, cf. [17, 50].

Theorem 5.2. Let n ⩾ 1 be given. Then for any e ⩾ 1 there are k = k(n, e) ⩾ 1, ε = ε(n, e), and c = c(n, e),

such that if X ⊆ Rn has a strong k-parametrization, then for all T at most cT ε many hypersurfaces in Rn of

degree ⩽ e are enough to cover X(Q, T ), with ε(n, e)→ 0 as e→∞.

We prove this in Section 6.1. In Section 5.2 we obtain Theorem 5.1 from Theorem 5.2 by induction on n,

using a strong parametrization result. Yomdin [64] and Gromov [39] proved such a strong parametrization

uniformly for the members of any semialgebraic family of subsets of [−1, 1]n. We need this for any definable

“o-minimal” family. To make this precise, let E ⊆ Rm and X ⊆ E × Rn. For s ∈ E,

X(s) := {a ∈ Rn : (s, a) ∈ X} (a section of X)

We consider E,X as describing the family
(
X(s)

)
s∈E of sections X(s) ⊆ Rn; the sets X(s) are the members

of the family. If E and X are definable in the o-minimal expansion R̃ of R, then its members are definable in

R̃.

Theorem 5.3. Let R̃ be an o-minimal expansion of R and E ⊆ Rm and X ⊆ E × Rn with n ⩾ 1 definable

in R̃ such that every section X(s) is a subset of [−1, 1]n with empty interior. Then there is for every

k ⩾ 1 an M ∈ N such that every section X(s) is the union of at most M subsets, each having a strong

k-parametrization.

This is enough for use in the next section, but Chapter 7 gives more precise results. The M in Theorem 5.3

is a source of ineffectivity, and in this connection we call attention to [13, 14, 16] where among other things

Binyamini, Novikov and others establish better (logarithmic) bounds for certain o-minimal expansions of R.

5.2 Proof from the two ingredients

Throughout this section we assume n ⩾ 1. We begin by stating some elementary facts about Xalg and Xtr

for X ⊆ Rn. The first is obvious:

Lemma 5.4. If X = X1 ∪ · · · ∪Xm, then Xalg ⊇ Xalg
1 ∪ · · · ∪Xalg

m , and thus

Xtr ⊆ Xtr
1 ∪ · · · ∪Xtr

m.

Note also that if X is open in Rn, then Xtr = ∅.

Lemma 5.5. Suppose S ⊆ Rn is semialgebraic, f : S → Rm is semialgebraic and injective, and f maps the

set X ⊆ S homeomorphically onto Y = f(X) ⊆ Rm. Then f(Xalg) = Y alg and thus f(Xtr) = Y tr. (We

allow m = 0 for later inductions.)
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Proof. It is clear that f(Xalg) ⊆ Y alg. Also, for any connected infinite semialgebraic set C ⊆ Y , the set

f−1(C) ⊆ S is semialgebraic (since C and f are), contained in X (since f is injective), hence connected and

infinite, and thus f−1(C) ⊆ Xalg. This shows f−1(Y alg) ⊆ Xalg, and thus f(Xalg) = Y alg.

In order to apply Theorem 5.3 we need to reduce to the case of subsets of [−1, 1]n. This is done as follows.

For X ⊆ Rn and I ⊆ {1, . . . , n}, set

XI := {a ∈ X : |ai| > 1 for all i ∈ I, |ai| ⩽ 1 for all i /∈ I}

and define the semialgebraic map fI : RnI → Rn by fI(a) = b where bi := a−1
i for i ∈ I and bi := ai for i /∈ I.

Thus fI maps RnI homeomorphically onto its image, a subset of [−1, 1]n. If I = ∅, then fI is the inclusion

map RnI = [−1, 1]n → Rn. Note that for a ∈ Qn we have fI(a) ∈ Qn and H(a) = H
(
fI(a)

)
. Moreover, X is

the disjoint union of the sets XI , and for YI = fI(XI) we have YI ⊆ [−1, 1]n, Y tr
I = fI(X

tr
I ) by Lemma 5.5,

so N(Y tr
I , T ) = N(Xtr

I , T ) for all T .

The sketch below actually proves the Counting Theorem, modulo a uniformity assumption that arises at the

end of the sketch. This motivates a stronger “definable family” version of the theorem, which we then prove

as in the sketch.

In the rest of this section we fix an o-minimal expansion R̃ of R, and definable is with respect to R̃. We

exploit facts about semialgebraic cells C ⊆ Rn and the corresponding homeomorphisms pC : C → p(C); see

the subsections “Cells” and “Cell Decomposition” of section 4.2.

Sketch of the proof of Theorem 5.1 from Theorems 5.2 and 5.3. Let X ⊆ Rn be

definable. We need to show that there are ‘few’ rational points on X outside Xalg. We proceed by induction

on n. By Lemma 5.4 and the remark following it we can remove the interior of X in Rn from X and arrange

that X has empty interior. As indicated just before this sketch we also arrange X ⊆ [−1, 1]n.
Let ε be given, and take e ⩾ 1 so large that ε(n, e) ⩽ ε/2 in Theorem 5.2, and take k = k(n, e). Theorem 5.3

gives M ∈ N such that X is a union of at most M subsets, each admitting a strong k-parametrization. Then

Theorem 5.2 gives X(Q, T ) ⊆
⋃M
i=1

⋃J
j=1Hij , where the Hij are hypersurfaces in Rn of degree ⩽ e, and

J ∈ N, J ⩽ cT ε/2, c = c(n, e) as in that theorem. If a ∈ Xtr(Q, T ) and a ∈ Hij , then clearly a ∈ (X ∩Hij)
tr.

Thus

Xtr(Q, T ) ⊆
M⋃
i=1

J⋃
j=1

(X ∩Hij)
tr(Q, T ).

Let H be any hypersurface in Rn of degree ⩽ e. We aim for an upper bound on N
(
(X ∩H)tr, T

)
of the form

c1T
ε/2 with c1 ∈ R> independent of H and T . (If we achieve this, then applying this to the hypersurfaces

Hij we obtain

N(Xtr, T ) ⩽ MJc1T
ε/2 ⩽ M · cT ε/2 · c1T ε/2 = Mcc1 · T ε,

and we are done.) Take semialgebraic cells C1, . . . , CL in Rn, L ∈ N, such that

H = C1 ∪ · · · ∪ CL.

Suppose C = Cl is one of those cells. Then we have a semialgebraic homeomorphism p = pC : C → p(C) =

p(Cl) onto an open cell p(Cl) in Rnl with nl < n, and so p maps X ∩ Cl homeomorphically onto its image

Yl ⊆ p(Cl) ⊆ Rnl . Now p is given by omitting n− nl of the coordinates, so for a ∈ Cl(Q) we have p(a) ∈ Qnl
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and H
(
p(a)

)
⩽ H(a). The hypersurfaces of degree ⩽ e in Rn belong to a single semialgebraic family, so

by Proposition 4.4 we can (and do) take here L ⩽ L(e, n), with L(e, n) ∈ N⩾1 depending only on e, n. By

Lemma 5.4,

(X ∩H)tr ⊆ (X ∩ C1)
tr ∪ · · · ∪ (X ∩ CL)tr.

Since the nl < n we can (and do) assume inductively that for all T ,

N(Y tr
l , T ) ⩽ BlT

ε/2, l = 1, . . . , L

with Bl ∈ R> independent of T . Hence for all T ,

N
(
(X ∩ Cl)tr), T

)
⩽ BlT

ε/2, l = 1, . . . , L

by Lemma 5.5 applied to the maps p = pCl
, and thus

N
(
(X ∩H)tr, T

)
⩽ (B1 + · · ·+BL)T

ε/2.

Assume we can take B1, . . . , BL ⩽ B with B ∈ R> depending only on X, ε, not on H,Y1, . . . , YL. Then

c1 := L(e, n)B is a positive real number as aimed for.

The above sketch is a proof, modulo the assumption at the end. The hypersurfaces H in the sketch belong

fortunately to a single semialgebraic family, a fact we already used, and so the sets Yl as H varies can be taken

to belong to a single definable family. The inductive hypothesis should accordingly include this uniformity,

and so the full proof should be carried out not just for one set X, but uniformly for all sets from a definable

family, with constants depending only on the family. This is why we need Theorem 5.3 not just for a single

definable X ⊆ [−1, 1]n but for all members of a definable family of such sets. (As to the M introduced at the

beginning of the sketch, Theorem 5.3 also provides an M that works for all members of the family.) Below

we carry out the details.

The next lemma is a routine consequence of Theorem 4.2 and Proposition 4.4. The i-cells in this lemma and

the projection maps pi : Rn → Rd in the proof of Theorem 5.7 are defined in the subsection “Cells” from

Section 4.2.

Lemma 5.6. Let e ⩾ 1 and set D :=
(
e+n
n

)
, the dimension of the R-linear space of polynomials over R in n

variables and of degree ⩽ e. Then there are L ∈ N⩾1 and semialgebraic sets H, C1, . . . , CL ⊆ F × Rn, F :=

RD \ {0}, such that

{H(t) : t ∈ F} = set of hypersurfaces in Rn of degree ⩽ e,

H(t) = C1(t) ∪ · · · ∪ CL(t) for all t ∈ F , and for each l ∈ {1, . . . , L} there is an i = (i1, . . . , in) in {0, 1}n,
i ̸= (1, . . . , 1), with the property that every Cl(t) with t ∈ F is a semialgebraic i-cell in Rn or empty.

Two family versions of the Counting theorem. In this subsection we assume that E ⊆ Rm

and X ⊆ E × Rn are definable.

Theorem 5.7. Let any ε be given. Then there is a constant c = c(X, ε) such that for all s ∈ E and all T we

have N(X(s)tr, T ) ⩽ cT ε.
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Proof. We proceed by induction on n. As in the sketch we reduce to the case where X(s) is for every s ∈ E
a subset of [−1, 1]n with empty interior. Take e ⩾ 1 so large that ε(n, e) ⩽ ε/2 in Theorem 5.2, and set

k = k(n, e). So for every Z ⊆ Rn with a strong k-parameterization we can cover Z(Q, T ) with at most cT ε/2

hypersurfaces of degree ⩽ e where c = c(n, e) is as in Theorem 5.2. Theorem 5.3 gives M ∈ N such that each

section X(s) is a union of at most M subsets, each admitting a strong k-parametrization. Let s ∈ E, and let

H be a hypersurface of degree ⩽ e. As in the sketch we see that by our choice of k, e it is enough to show:

N
(
(X(s) ∩H)tr, T

)
⩽ c1T

ε/2, for all T,

where c1 ∈ R> depends only on X, ε, not on s,H, T . Below we provide such c1.

With the present values of e and n, set D :=
(
e+n
n

)
, F := RD \ {0}, and let H, C1, . . . , CL ⊆ F × Rn be

as in Lemma 5.6. For l = 1, . . . , L, take il = (il1, . . . , i
l
n) in {0, 1}n, not equal to (1, . . . , 1), such that for all

t ∈ F the subset Cl(t) of Rn is a semialgebraic il-cell or empty, so

pil : Rn → Rnl , nl := il1 + · · ·+ iln < n,

maps Cl(t) homeomorphically onto its image. Then we have for l = 1, . . . , L a definable set Yl ⊆ (E×F )×Rnl

such that for all (s, t) ∈ E × F ,
Yl(s, t) = pil

(
X(s) ∩ Cl(t)

)
.

Since all nl < n we can assume inductively that for all (s, t) ∈ E × F and all T ,

N
(
Yl(s, t)

tr, T
)
⩽ BlT

ε/2, l = 1, . . . , L

with Bl = Bl(Yl, ε) ∈ R> independent of s, t, T . Since H = H(t) for some t ∈ F ,

N
(
(X(s) ∩H)tr, T

)
⩽ (B1 + · · ·+BL)T

ε/2,

as in the sketch. Thus c1 := B1 + · · ·+BL is as promised.

Next a variant of Theorem 5.7 where we remove from the sets X(s) only a definable part V (s) of X(s)alg

instead of all of it. The example preceding the statement of Theorem 5.1 shows that this variant is strictly

stronger than Theorem 5.7.

Theorem 5.8. Let any ε be given. Then there is a definable set V = V (X, ε) ⊆ X and a constant c = c(X, ε)

such that for all s ∈ E and all T ,

V (s) ⊆ X(s)alg and N
(
X(s) \ V (s), T

)
⩽ cT ε.

Proof. By induction on n. We follow closely the proof of Theorem 5.7. Let V0 ⊆ X be given by V0(s) =

interior of X(s) in Rn for s ∈ E. This definable set V0 will be part of a V as required. Replacing X by X \V0
we arrange that X(s) has empty interior for all s ∈ E. We arrange in addition that X(s) ⊆ [−1, 1]n for all

s ∈ E. Now take e and k = k(n, e) as in the proof of Theorem 5.7. It will be enough to find a definable

V ⊆ X and a constant c1 ∈ R> such that for all s ∈ E, every hypersurface H of degree ⩽ e in Rn, and all T

we have

V (s) ⊆ X(s)alg, N
(
(X(s) ∩H) \ V (s), T

)
⩽ c1T

ε/2.
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We take the semialgebraic sets H, C1, . . . , CL ⊆ F ×Rn and the definable sets Yl ⊆ E×F ×Rnl for l = 1, . . . , L

as in the proof of Theorem 5.7. For such l we have nl < n, so we can assume inductively that we have a

definable set Wl ⊆ Yl and a number Bl = Bl(Yl, ε) ∈ R> such that for all s ∈ E, t ∈ F , and T we have

Wl(s, t) ⊆ Yl(s, t)
alg and N

(
Yl(s, t) \Wl(s, t), T

)
⩽ BlT

ε/2.

It is now easy to check that the definable set V ⊆ X such that for all s ∈ E,

V (s) =

L⋃
l=1

⋃
t∈F
Cl(t) ∩ p−1

il

(
Wl(s, t)

)
has the desired property.

In the next two chapters we establish the results used in the proofs above, namely Theorems 5.2 and 5.3.

In Chapter 8 we strengthen and extend Theorem 5.8 in several ways without changing the basic inductive

set-up of its proof.
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CHAPTER 6

The Bombieri-Pila determinant method

This chapter is devoted to establishing Theorem 6.6, which is more precise form of Theorem 5.2. The material

here essentially follows the technology around [50, Proposition 4.2].

6.1 Proof of Theorem 5.2

We begin with introducing a key determinant. Let k be a field and set

D(n, e) :=

(
e+ n

n

)
= #{α ∈ Nn : |α| ⩽ e} ∈ N⩾1,

the dimension of the k-linear space of n-variable polynomials over k of (total) degree at most e. Thus

D(n, 0) = 1, D(n, e) = en

n!

(
1 + o(1)

)
as e→∞, and if n ⩾ 1, then D(n, e) is strictly increasing as a function

of e.

For now we fix n and e, set D := D(n, e) and let α range over Nn. By a hypersurface in kn of degree ⩽ e

we mean the set of zeros in kn of a nonzero n-variable polynomial of degree ⩽ e with coefficients in k.

Lemma 6.1. A set S ⊆ kn is contained in some hypersurface in kn of degree at most e if and only if

det(aαi )|α|⩽e,i=1,...,D = 0 for all a1, . . . , aD ∈ S.

Proof. Let f =
∑
|α|⩽e

cαx
α be a nonzero polynomial in x = (x1, . . . , xn) of degree at most e with coefficients

cα ∈ k such that f = 0 on S. Then for any points a1, . . . , aD ∈ S we have f(a1) = · · · = f(aD) = 0, that is,∑
|α|⩽e

cα
(
aα1 , . . . , a

α
D

)
= 0 in kD,

so the D vectors (aα1 , . . . , a
α
D) (|α| ⩽ e) in the k-linear space kD are linearly dependent, which gives the

desired conclusion about the determinant.

Conversely, suppose det(aαi )|α|⩽e,i=1,...,D = 0 for all a1, . . . , aD ∈ S. Then for A := {α : |α| ⩽ e}, the
k-linear subspace of kA spanned by the vectors (aα)|α|⩽e with a ∈ S has dimension < D. Take a1, . . . , aM ∈ S
such that

(aα1 )|α|⩽e, . . . , (a
α
M )|α|⩽e

is a basis of this subspace. Then M < D, so we have cα ∈ k for |α| ⩽ e, with cα ̸= 0 for some α and∑
|α|⩽e cαa

α = 0 for a = a1, . . . , aM , and thus for all a ∈ S.
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Next we introduce some numbers related to D = D(n, e):

E(n, e) :=

(
e+ n− 1

n− 1

)
= #{α : |α| = e},

the dimension of the k-linear space of homogeneous n-variable polynomials of degree e over k. (Here
(−1
−1

)
:= 1

and
(
k
−1

)
:= 0.) So D(n, e) =

∑e
i=0E(n, i). Next, we set V (n, e) :=

∑e
i=0 iE(n, i). Now for i ⩾ 1,

iE(n, i) = i

(
i+ n− 1

n− 1

)
= n

(
i+ n− 1

n

)
= nE(n+ 1, i− 1), so

V (n, e) = n

e∑
i=1

E(n+ 1, i− 1) = nD(n+ 1, e− 1) for e ⩾ 1, V (n, 0) = 0,

and thus for fixed n we have V (n, e) = nen+1

(n+1)!

(
1 + o(1)

)
as e→∞.

Let e,m, n ⩾ 1 below and define b = b(m, n, e) ∈ N by requiring

D(m, b) ⩽ D(n, e) < D(m, b+ 1) .

Next, we set for b = b(m,n, e):

B(m, n, e) : =

b∑
i=0

iE(m, i) + (b+ 1) ·
(
D(n, e)−

b∑
i=0

E(m, i)
)

= V (m, b) + (b+ 1) ·
(
D(n, e)−D(m, b)

)
∈ N⩾1,

ε(m, n, e) : =
mneD(n, e)

B(m,n, e)
.

Lemma 6.2. With fixed m,n ⩾ 1 and e→∞, we have:

1. b(m, n, e) =
(
m!en

n!

)1/m (
1 + o(1)

)
;

2. B(m, n, e) = m
(m+1)!

(
m!
n! )

(m+1)/men(m+1)/m
(
1 + o(1));

3. if m < n, then ε(m, n, e)→ 0.

Proof. As to (1), for e→∞ we have b = b(m,n, e)→∞, so

D(m, b) =
bm

m!

(
1 + o(1)

)
⩽

en

n!

(
1 + o(1)

)
⩽

(b+ 1)m

m!

(
1 + o(1)

)
,

but the last term here is also bm

m!

(
1 + o(1)

)
, like the first term, and this easily yields the asymptotics

claimed for b. For (2), substituting the result of (1) in the asymptotics for D(m, b) as b → ∞ leads to

(b+ 1) ·
(
D(n, e)−D(m, b)

)
= o
(
en(m+1)/m

)
, and then in the asymptotics for V (m, b) yields the asymptotics

claimed for B(m,n, e). Now (3) is an easy consequence of (2).

In the proof of Proposition 6.4 below we need a reasonable bound on the absolute value of the determinant of

a certain (D ×D)-matrix of the form
(
aαi
)
|α|⩽e,i=1,...,D

. We achieve this by expressing the matrix as a sum

of simpler matrices. In this connection we need a useful expression for the determinant of a sum of matrices.

Turning to this, let N ∈ N and consider an (N × N)-matrix a = (aµν)1⩽µ,ν⩽N over a field k. The

determinant of an (N ×N)-matrix over k is an alternating multilinear function of its columns. The columns
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of a are a1, . . . , aN ∈ kN where aν = (a1ν , . . . , aNν)
t ∈ kN is the νth column of a. Thus

a = (a1, . . . , aN ) ∈ kN × · · · × kN (with N factors kN ).

Next, let a = a1 + · · · + ar with r ∈ N and a1, . . . , ar also (N × N)-matrices over k, with aj having νth

column ajν . Then

det a = det
(
a1, . . . , aN

)
= det

( r∑
j=1

aj1, . . . ,

r∑
j=1

ajN
)

=
∑
j

det
(
aj11 , . . . , a

jN
N

)
where j = (j1, . . . , jN ) ranges here and below over elements of {1, . . . , r}N . Let j be given. If for some

j in {1, . . . , r} the number of ν ∈ {1, . . . , N} with jν = j is more than rank aj , then the column vectors

aj11 , . . . , a
jN
N are k-linearly dependent, so det

(
aj11 , . . . , a

jN
N

)
= 0. Thus if J ⊆ {1, . . . , r}N contains all j such

that

#{ν ∈ {1, . . . , N} : jν = j} ⩽ rank aj , for j = 1, . . . , r,

then

(∗) det a =
∑
j∈J

det
(
aj11 , . . . , a

jN
N

)
=
∑
j∈J

det
(
ajνµν
)
1⩽µ,ν⩽N

.

We shall also use the following observation:

Lemma 6.3. Let A be a set and V a finite-dimensional subspace of the k-linear space kA. Then for any

N ∈ N, functions f1, . . . , fN ∈ V , and points a1, . . . , aN in A, the rank of the (N×N)-matrix
(
fµ(aν)

)
1⩽µ,ν⩽N

over k is ⩽ dimV .

Proof. The map f 7→
(
f(a1), . . . , f(aN )

)
: V → kN is k-linear, so the image of this map is a subspace of the

k-linear space kN of dimension ⩽ dimV .

Recall our norm |(t1, . . . , tm)| := max{|t1|, . . . , |tm|} on Rm for m ⩾ 1.

Proposition 6.4. Let e,m, n ⩾ 1, m < n, and k := b(m,n, e) + 1. Then there is a constant K = K(m,n, e)

with the following property: if f : (0, 1)m → Rn is a strong k-parametrization, 0 < r ⩽ 1, and a0, . . . , aD ∈
(0, 1)m with D = D(n, e) are such that |ai − a0| ⩽ r for i = 1, . . . , D, then

|det
(
f(ai)

α
)
|α|⩽e, i=1,...,D

| < KrB(m,n,e).

Proof. Let f = (f1, . . . , fn) with fj : (0, 1)
m → R. Taylor expansion of fj of order b := b(m,n, e) around a0

with explicit remainder gives for a ∈ (0, 1)m (and α, β ranging over Nm, k = b+ 1):

fj(a) =
∑
|α|⩽b

f
(α)
j

α!
(a− a0)α +

∑
|β|=k

Rβ,j(a)(a− a0)β ,

where Rβ,j =
|β|
β!

∫ 1

0

(1− t)bf (β)j

(
a0 + t(a− a0)

)
dt for |β| = k.
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Thus for i = 1, . . . , D and j = 1, . . . , n:

fj(ai) = Pj(ai − a0) +Rij(ai − a0)

where Pj ∈ R[x1, . . . , xm] has degree ⩽ b, the remainder is given by a homogeneous polynomial Rij ∈
R[x1, . . . , xm] of degree k = b+ 1, and all coefficients of Pj and Rij are bounded in absolute value by 1. Let

|α| ⩽ e. Then for i = 1, . . . , D we have

n∏
j=1

(Pj +Rij)
αj = Pα +Riα

with Pα ∈ R[x1, . . . , xm] of degree ⩽ b, the remainder Riα ∈ R[x1, . . . , xm] has only monomials of degree

> b, and every coefficient of Pα and Riα is bounded in absolute value by D(m, k)|α|, the latter because∏n
j=1(Pj +Rij)

αj is a product of |α| factors of the form
∑
cβx

β , with the summation over the β ∈ Nm with

|β| ⩽ k, and real coefficients cβ with |cβ | ⩽ 1. Hence for i = 1, . . . , D,

f(ai)
α =

n∏
j=1

fj(ai)
αj = Pα(ai − a0) +Riα(ai − a0).

We have D(m, k)|α| ⩽ D(m, k)e ⩽ c for a positive constant c = c(m,n, e) depending only on m,n, e. Next,

Pα =
∑b
j=0 P

j
α where P jα ∈ R[x1, . . . , xm] is homogeneous of degree j. In the matrix algebra RD×D this

yields the sum decomposition

(
f(ai)

α
)
α,i

=

b∑
j=0

(
P jα(ai − a0)

)
α,i

+
(
Riα(ai − a0)

)
α,i

=

k∑
j=0

(
P jiα(ai − a0)

)
α,i

where P jiα := P jα for j = 0, . . . , b and P kiα := Riα. For j = 0, . . . , b the rank of the matrix
(
P jiα(ai − a0)

)
α,i

=(
P jα(ai − a0)

)
α,i

is at most E(m, j) by Lemma 6.3, so expression (∗) for the determinant of such a sum gives

det
(
f(ai)

α
)
α,i

=
∑
j∈J

det
(
P jiiα(ai − a0)

)
α,i

where J is the set of all j = (j1, . . . , jD) ∈ {0, . . . , b+ 1}D such that

#{ν ∈ {1, . . . , D} : jν = j} ⩽ E(m, j), for j = 0, . . . , b.

Then for j ∈ J we have |det
(
P jiiα(ai − a0)

)
α,i
| ⩽ D!cDr|j|. It remains to show that for j ∈ J we have

|j| ⩾ B(m,n, e), because then

|det
(
f(ai)

α
)
|α|⩽e, i=1,...,D

| ⩽ #J ·D!cDrB(m,n,e),

which gives a constant K = K(m,n, e) as claimed.
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Fix any j ∈ J , and let dj ∈ N for j = 0, . . . , b be such that

#{ν ∈ {1, . . . , D} : jν = j} = E(m, j)− dj ,

and set N := #{ν ∈ {1, . . . , D} : jν = b+ 1}. Then

D = D(n, e) =

b∑
j=0

(E(m, j)− dj) +N = D(m, b)−
b∑
j=0

dj +N,

so N = D(n, e)−D(m, b) + d with d :=
∑b
j=0 dj . Hence

|j| =

D∑
ν=1

jν =

b∑
j=0

j
(
E(m, j)− dj

)
+ (b+ 1)N

= V (m, b)−
b∑
j=0

jdj + (b+ 1)
(
D(n, e)−D(m, b) + d

)
= V (m, b) + (b+ 1)

(
D(n, e)−D(m, b)

)
+

b∑
j=0

(b+ 1− j)dj

= B(m,n, e) +

b∑
j=0

(b+ 1− j)dj ⩾ B(m,n, e).

Next an observation that allows us to exploit (as Liouville did) the simple fact that if r ∈ Z and |r| < 1, then

r = 0.

Lemma 6.5. Let points b1, . . . , bD ∈ Qn with D = D(n, e) be given such that H(b1), . . . ,H(bD) ⩽ t, where

t ⩾ 1. Then

det
(
bαi
)
|α|⩽e,i ∈

Z
s

with s ∈ N⩾1, s ⩽ tneD.

Proof. For i = 1, . . . , D we have bi = (bi1, . . . , bin) with bij = cij/sij , cij , sij ∈ Z, 1 ⩽ sij ⩽ t, so

bαi =

n∏
j=1

c
αj

ij /

n∏
j=1

s
αj

ij ∈
Z
siα

, siα :=

n∏
j=1

s
αj

ij .

Let {α : |α| ⩽ e} = {α1, . . . , αD}. Then det
(
bαi
)
|α|⩽e,i is a sum of terms of the form ±

∏D
i=1 b

ασ(i)

i where σ

is a permutation of {1, . . . , D}. Now the term ±
∏D
i=1 b

ασ(i)

i corresponding to σ lies in Z
sσ

with

sσ :=

D∏
i=1

siασ(i)
=

D∏
i=1

n∏
j=1

s
ασ(i)j

ij

and clearly s :=
∏D
i=1

∏n
j=1 s

e
ij is a common integer multiple of the integers sσ with 1 ⩽ s ⩽ tneD, so s has

the desired property.

The following is Theorem 5.2 with more explicit values of k and ε.

Theorem 6.6. Let e,m, n ⩾ 1, m < n; set k := b(m,n, e) + 1, ε := ε(m,n, e). Let X ⊆ Rn have a strong

k-parametrization f : (0, 1)m → Rn. Then for all T at most cT ε hypersurfaces in Rn of degree ⩽ e are enough

to cover X(Q, T ), where c = c(m,n, e) depends only on m,n, e.
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Proof. Let K = K(m,n, e) be as in Proposition 6.4, and let T be given. With D = D(n, e), let a1, . . . , aD ∈
(0, 1)m be such that f(a1), . . . , f(aD) ∈ X(Q, T ). Then Lemma 6.5 gives s ∈ N⩾1 with s ⩽ TneD (so

T−neD ⩽ 1/s) such that

det
(
f(ai)

α
)
|α|⩽e,i=1,...D

∈ Z
s
.

Assume also that 0 < r ⩽ 1 and a0 ∈ (0, 1)m are such that |ai − a0| ⩽ r for i = 1, . . . , D. Can we guarantee

that det
(
f(ai)

α
)
|α|⩽e,i=1,...D

= 0 if r is small enough? Proposition 6.4 gives

|det
(
f(ai)

α
)
|α|⩽e, i=1,...,D

| < KrB , B = B(m,n, e).

So the answer to the question is yes: it is enough that KrB ⩽ T−neD, that is, r ⩽
(
K−1T−neD)1/B. Next,

considering closed balls of radius r with respect to the norm | · |, centered at a point in (0, 1)m, how many are

enough to cover (0, 1)m? For m = 1, the interval (0, 1) is covered by e segments [a− r, a+ r] with 0 < a < 1,

for any natural number e with 2re ⩾ 1, and there is clearly such an e with e ⩽ r−1. Hence at most r−m

closed balls of radius r centered at points in (0, 1)m are enough to cover (0, 1)m. Taking r =
(
K−1T−neD)1/B

it follows from Lemma 6.1 that at most r−m = Km/BTmneD/B = Km/BT ε hypersurfaces in Rn of degree

⩽ e are enough to cover the set X(Q, T ). So the theorem holds with c = Km/B .

61



CHAPTER 7

An o-minimal Yomdin-Gromov theorem

Throughout this chapter, R is an o-minimal field. We refer to Section 4.2 for the basic facts about o-minimal

fields; in particular on the later subsections in that section concerning differentiation and smoothness. As

usual we identify Q with the prime subfield of R. We drop the subscript R in expressions like (0, 1)R

(= {t ∈ R : 0 < t < 1}) and [a, b]R (= {t ∈ R : a ⩽ t ⩽ b}) for a < b in R.

7.1 Parametrization

Let X ⊆ Rm be definable. Call X strongly bounded if X ⊆ [−N,N ]m for some N in N. Call a definable map

f : X → Rn strongly bounded if its graph Γ(f) ⊆ Rm+n is strongly bounded; equivalently, X ⊆ Rm and

f(X) ⊆ Rn are strongly bounded.

A partial k-parametrization of X is a definable Ck-map f : (0, 1)l → Rm such that l = dimX, the image

of f is contained in X, and f (β) is strongly bounded for all β ∈ Nl with |β| ⩽ k. A k-parametrization of X is

a finite set of partial k-parametrizations of X whose images cover X; note that then X is strongly bounded.

As a trivial example, if X is finite and strongly bounded, then X has the k-parametrization {ϕa : a ∈ X},
where ϕa : (0, 1)0 → Rm takes the value a.

The basic ideas for the proofs of the next two parametrization theorems stem from Yomdin [64] and

Gromov [39] who considered the semialgebraic case. For our purpose we need to work in an arbitrary

o-minimal field.

Theorem 7.1. Any strongly bounded definable set X ⊆ Rm has for every k ⩾ 1 a k-parametrization.

The inductive proof of this theorem also requires a version for definable maps. A k-reparametrization of a

definable map f : X → Rn is a k-parametrization Φ of its domain X such that for every ϕ : (0, 1)l → Rm

in Φ, f ◦ ϕ is of class Ck and (f ◦ ϕ)(β) is strongly bounded for all β ∈ Nl with |β| ⩽ k; note that then

{f ◦ ϕ : ϕ ∈ Φ} is a k-parametrization of f(X), provided dimX = dim f(X).

Theorem 7.2. Any strongly bounded definable map f : X → Rn, X ⊆ Rm has for every k ⩾ 1 a

k-reparametrization.

Sections 7.2, 7.3, 7.4 contain the proof of Theorems 7.1 and 7.2. In Section 7.4 we assume R is ℵ0-saturated,
and thus non-archimedean. This can always be arranged by passing to a suitable elementary extension of R

and noting that the statements of 7.1 and 7.2 pull back to the original R. (See Section 4.3 for “ℵ0-saturated”
and “elementary extension” and the relevant facts about these notions. See in particular the last two

subsections of that section for a more detailed explanation of how these facts apply to proving Theorems 7.1

and 7.2.)
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We often use the following, obtained by repeated use of the Chain Rule:

Lemma 7.3. Let f : U → R, g : V → R be definable of class Ck, k ⩾ 1, with U, V (definable) open subsets

of R. Then f ◦ g : V ∩ g−1(U)→ R is of class Ck with

(f ◦ g)(k) =

k∑
i=1

(f (i) ◦ g) · pik
(
g(1), . . . , g(k−i+1)

)
where the pik ∈ Z[x1, . . . , xk−i+1] have constant term 0 and pkk = xk1 .

Lemma 7.4. With U ⊆ Rl, V ⊆ Rm, let f : U → Rm, g : V → Rn be definable of class Ck such that

f(U) ⊆ V and f (α) and g(β) are strongly bounded for all α ∈ Nl and β ∈ Nm with |α| ⩽ k and |β| ⩽ k. Then

the definable map g ◦ f : U → Rn is of class Ck with strongly bounded (g ◦ f)(α) for all α ∈ Nl with |α| ⩽ k.

7.2 Reparametrizing unary functions

Much in this section is bookkeeping, but we begin with a key analytic fact:

Lemma 7.5. Let f : (0, 1)→ R be a definable Ck-function, k ⩾ 2, with strongly bounded f (j) for 0 ⩽ j ⩽ k−1

and decreasing |f (k)|. Define g : (0, 1)→ R by g(t) = f(t2). Then g(j) is strongly bounded for 0 ⩽ j ⩽ k.

Proof. Let t range over (0, 1). Lemma 7.3 gives

g(j)(t) =

j∑
i=0

ρij(t).f
(i)(t2), j = 0, . . . , k

where each function ρij is given by a 1-variable polynomial with integer coefficients, of degree ⩽ i, and with

ρjj(t) = 2jtj . All summands here are strongly bounded except possibly the one with i = j = k, which is

2ktkf (k)(t2). So it suffices that tkf (k)(t2) is strongly bounded. Let c ∈ Q>0 be a strong bound for f (k−1). We

claim that then |f (k)(t)| ⩽ 4c/t for all t. Suppose towards a contradiction that t0 ∈ (0, 1) is a counterexample,

that is, |f (k)(t0)| > 4c/t0. Then the Mean Value Theorem (Lemma 4.11) provides a ξ ∈ [t0/2, t0] such that

f (k−1)(t0)− f (k−1)(t0/2) = f (k)(ξ).(t0 − t0/2) = f (k)(ξ) · t0/2.

Since |f (k)| is decreasing by assumption, |f (k)(ξ)| ⩾ |f (k)(t0)| > 4c/t0. Hence

2c ⩾ |f (k−1)(t0)− f (k−1)(t0/2)| > (4c/t0) · (t0/2) = 2c.

This contradiction proves our claim. Then for all t,

|tkf (k)(t2)| ⩽ tk · (4c/t2) = 4ctk−2 ⩽ 4c

using k ⩾ 2 for the last inequality.

The lemma fails for k = 1, with t 7→ t1/3 as a counterexample.

Lemma 7.6. Let f : (0, 1)→ R be definable and strongly bounded. Then f has a 1-reparametrization Φ such

that for every ϕ ∈ Φ, ϕ or f ◦ ϕ is given by a 1-variable polynomial with strongly bounded coefficients in R.
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Proof. Take elements a0 = 0 < a1 < · · · < an < an+1 = 1 in R such that, for i = 0, 1, . . . , n, f is of class

C1 on (ai, ai+1), and either |f ′| ⩽ 1 on (ai, ai+1), or |f ′| > 1 on (ai, ai+1). Let i ∈ {0, . . . , n}. If |f ′| ⩽ 1 on

(ai, ai+1), define

ϕi : (0, 1)→ R, ϕi(t) := ai + (ai+1 − ai)t.

If |f ′| > 1 on (ai, ai+1), set

bi := lim
t↓ai

f(t), bi+1 := lim
t↑ai+1

f(t)

and as in this case f is continuous and strictly monotone on (ai, ai+1) we can define ϕi : (0, 1) → R by

ϕi(t) = f−1
(
bi+(bi+1− bi)t

)
, where f−1 denotes the compositional inverse of the restriction of f to (ai, ai+1);

this compositional inverse has domain (bi, bi+1) if bi < bi+1, and domain (bi+1, bi) if bi > bi+1.

In either case, ϕi maps (0, 1) onto (ai, ai+1) and both ϕi and f ◦ ϕi are of class C1 with strongly bounded

derivative. Moreover, ϕi or f ◦ ϕi is given by a univariate polynomial of degree 1 with strongly bounded

coefficients in R. Thus

Φ := {ϕ0, . . . , ϕn, â1, . . . , ân}

is a 1-reparametrization of f as required, where âi denotes the constant function on (0, 1) with value ai.

Lemma 7.7. Let k ⩾ 1 and suppose f : (0, 1) → R is definable and strongly bounded. Then f has a

k-reparametrization Φ such that for all ϕ ∈ Φ, ϕ or f ◦ ϕ is given by a 1-variable polynomial with strongly

bounded coefficients in R.

Proof. By induction on k. The case k = 1 is Lemma 7.6. Suppose k ⩾ 2 and Φ is a (k− 1)-reparametrization

of f with the additional property. Let ϕ ∈ Φ. Then {ϕ, f ◦ ϕ} = {g, h} where g is given by a univariate

polynomial with strongly bounded coefficients in R. Thus g is of class C∞, and g(i) is strongly bounded for

all i ∈ N, and h is of class Ck−1 with strongly bounded h(j) for j = 0, . . . , k− 1. In order to apply Lemma 7.5

we use o-minimality: take elements

a0 = 0 < a1 < . . . < anϕ
< anϕ+1 = 1

in R such that for i = 0, . . . , nϕ, the function h is of class Ck on (ai, ai+1) and |h(k)| is monotone on (ai, ai+1).

Define θϕ,i : (0, 1) → R as t 7→ ai + (ai+1 − ai)t, if |h(k)| is decreasing, and as t 7→ ai+1 + (ai − ai+1)t,

otherwise; so θϕ,i has image (ai, ai+1). Then h ◦ θϕ,i : (0, 1) → R is of class Ck, (h ◦ θϕ,i)(j) is strongly

bounded for j = 0, . . . , k− 1, and |h ◦ θ(k)ϕ,i | is decreasing. Let ρ : (0, 1)→ (0, 1) be the C∞-bijection sending t

to t2. By Lemma 7.5, the definable Ck-function h ◦ θϕ,i ◦ ρ : (0, 1)→ R has strongly bounded jth derivative

for j = 0, . . . , k. The function g ◦ θϕ,i ◦ ρ is still given by a 1-variable polynomial with strongly bounded

coefficients in R, and {g ◦ θϕ,i ◦ ρ, h ◦ θϕ,i ◦ ρ} = {ϕ ◦ θϕ,i ◦ ρ, f ◦ (ϕ ◦ θϕ,i ◦ ρ)}. The images of the functions

ϕ ◦ θϕ,i ◦ ρ with i ∈ {0, . . . , nϕ} cover the image of ϕ apart from finitely many points. So adding finitely many

constant functions with domain (0, 1) and values in (0, 1) to the set {ϕ ◦ θϕ,i ◦ ρ : ϕ ∈ Φ, i = 0, . . . , nϕ} we
obtain a k-reparametrization of f as claimed in the statement of the lemma.

Corollary 7.8. Let f : X → R be definable and strongly bounded with X ⊆ R. Then f has a k-

reparametrization, for every k ⩾ 1.

Proof. The case that X is finite is obvious. Suppose X is infinite, k ⩾ 1. Since X is a finite union of strongly

bounded intervals and points, it has a k-parametrization Φ by univariate polynomial functions of degree ⩽ 1.
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Now Lemma 7.7 provides for every ϕ : (0, 1)→ R in Φ a k-reparametrization Ψϕ of f ◦ ϕ : (0, 1)→ R; then

{ϕ ◦ ψ : ϕ ∈ Φ, ψ ∈ Ψϕ} is a k-reparametrization of f .

Next one might reparametrize “curves” (0, 1) → Rn with n ⩾ 2, but there is nothing special about the

univariate case here, so we do the general case:

Lemma 7.9. Let k,m ⩾ 1, and suppose that every strongly bounded definable function X → R with X ⊆ Rl,
l ⩽ m, has a k-reparametrization. Then every strongly bounded definable map X → Rn with X ⊆ Rl, l ⩽ m
and n ⩾ 1 has a k-reparametrization.

Proof. By induction on n ⩾ 1. Suppose F : X → Rn and f : X → R with X ⊆ Rm are definable, strongly

bounded, and F has a k-reparametrization. It is enough to show that then the strongly bounded definable

map (F, f) : X → Rn+1 has a k-reparametrization. The case of finite X being trivial, assume X is infinite.

Let Φ be a k-reparametrization of F and let ϕ ∈ Φ, ϕ : (0, 1)l → Rm, l = dimX ⩽ m. Applying the

hypothesis of the lemma to the map f ◦ ϕ : (0, 1)l → R we obtain a k-reparametrization Ψϕ of it. Then using

Lemma 7.4, {ϕ ◦ ψ : ϕ ∈ Φ, ψ ∈ Ψϕ} is a k-reparametrization of (F, f).

Remark. At one point we need a slight variant of this lemma, with the same proof: Let k,m ⩾ 1, and

suppose that every strongly bounded definable function (0, 1)l → R with l ⩽ m has a k-reparametrization.

Then every strongly bounded definable map (0, 1)l → Rn with l ⩽ m and n ⩾ 1 has a k-reparametrization.

Corollary 7.10. Let n ⩾ 1 and suppose f : X → Rn is definable and strongly bounded, with X ⊆ R. Then f

has a k-reparametrization, for every k ⩾ 1.

Proof. Immediate from Corollary 7.8 and the case m = 1 of Lemma 7.9.

7.3 Convergence

In this section we continue to work with our o-minimal field R. A set X ⊆ R is said to be bounded if

X ⊆ [−r, r] for some r ∈ R>. Since each definable subset of R is a finite disjoint union of intervals and

singletons, we can assign to each bounded definable set X ⊆ R its length ℓ(X) ∈ R so that ℓ(X) = b− a if X

is an interval (a, b), a < b in R, ℓ(X) = 0 for X = {a}, a ∈ R, and ℓ(X) = ℓ(X1) + ℓ(X2) if X is the disjoint

union of definable subsets X1, X2.

Let a, b ∈ R, a < b, let f : (a, b) → R be definable and bounded (the latter meaning that image(f) is

bounded), and let L ∈ R>. For s ∈ (a, b) we declare “|f ′(s)| > L” to mean: f is differentiable at s, and

|f ′(s)| > L. Suppose that |f ′(s)| > L for all s ∈ (a, b). Then by the Mean Value Theorem (Lemma 4.11),

ℓ
(
image(f)

)
> L · (b− a).

Let E ⊆ Rm be definable and (fs)s∈E a definable family of functions fs : (a, b) → R, meaning that the

function (s, t) 7→ fs(t) : E× (a, b)→ R is definable. We now use the observation above to obtain the following:

Lemma 7.11. Suppose N ∈ N is such that |fs(t)| ⩽ N for all s ∈ E and t ∈ (a, b). Then there is M ∈ N
such that for all L ∈ R> and s ∈ E,

ℓ
(
{t ∈ (a, b) : |f ′s(t)| > L}

)
⩽ M/L.

65



Proof. Let L ∈ R>, s ∈ E, and set XL,s := {t ∈ (a, b) : |f ′s(t)| > L}. O-minimality (Theorem 4.2,

Proposition 4.4, Theorem 4.14) gives a finite boundm independent of L, s, and disjoint intervals (ai, bi) ⊆ XL,s,

i = 1, . . . ,mL,s ⩽ m, such that XL,s \
⋃mL,s

i=1 (ai, bi) is finite. By the observation above, 2N > L(bi − ai) for
i = 1, . . . ,mL,s, so 2mL,sN > Lℓ

(
XL,s

)
. Thus ℓ

(
XL,s

)
< 2mN/L.

Some notation and terminology. For definable open U ⊆ Rm+1, V ⋐ U means that V is a definable

open subset of Rm+1 with V ⊆ U and dim(U \ V ) ⩽ m.

A cofinite subset of a set X is a set X0 ⊆ X such that X \X0 is finite. Let πm+1 : Rm+1 → R be given

by π(t1, . . . , tm, tm+1) = tm+1. Note that if X ⊆ Rm+1 is definable, then so is πm+1(X) ⊆ R.
Recall: |y| = max{|y1|, . . . , |yn|} for y in Rn. For a definable map f : X → Rn with (necessarily definable)

X ⊆ Rm, we set

∥f∥ := sup
a∈X
|f(a)| ∈ [0,+∞].

Note that if X is nonempty and closed and bounded in Rm and f is continuous, then this supremum is a

maximum, by Corollary 4.8.

Lemma 7.12. Let f : U → R, U ⋐ (0, 1)m+1, be a strongly bounded definable C1-function. Suppose ∂f/∂xi

is strongly bounded for i = 1, . . . ,m. Then

{t ∈ πm+1(U) : ∂f/∂xm+1(−, t) is bounded}

is a cofinite subset of πm+1(U), and thus of (0, 1).

Proof. Suppose not. Then the set {t ∈ πm+1(U) : ∂f/∂xm+1(−, t) is unbounded} contains an interval

(a, b) ⊆ (0, 1). Definable Selection (Proposition 4.10) then gives a definable family (γL)L∈R> of maps

γL = (γL,1, . . . , γL,m) : (a, b)→ (0, 1)m

such that for all L ∈ R> and t ∈ (a, b) we have
(
γL(t), t

)
∈ U and

∣∣ ∂f

∂xm+1

(
γL(t), t

)∣∣ > L.

Take N ∈ N such that ∥f∥ ⩽ N and ∥ ∂f∂xi
∥ ⩽ N for i = 1, . . . ,m. Let fL : (a, b) → R be given by

fL(t) := f
(
γL(t), t

)
. Applying Lemma 7.11 to the definable families

(
3mNγL,1

)
L∈R> , . . . ,

(
3mNγL,m

)
L∈R> ,

(3fL)L∈R> gives M ∈ N with the property that for all L ∈ R> there is a definable closed subset XL of (a, b)

with ℓ(XL) ⩽M/L such that for all t ∈ (a, b) \XL the map γL is differentiable at t and

3mN |γ′L,i(t)| ⩽ L, i = 1, . . . ,m, and

|f ′L(t)| =
∣∣ m∑
i=1

∂f

∂xi
(γL(t), t) · γ′L,i(t) +

∂f

∂xm+1
(γL(t), t)

∣∣ ⩽ L

3
.

Now take L with M/L < b − a and t ∈ (a, b) satisfying the m+ 2 displayed inequalities. The case m = 0

gives an immediate contradiction, and for m ⩾ 1,

∣∣ m∑
i=1

∂f

∂xi
(γL(t), t) · γ′L,i(t)

∣∣ ⩽ mN · L

3mN
=

L

3
,
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contradicting the conjunction of the first and last inequality.

The normalization of a function ψ : I → R on an interval I = (a, b) ⊆ (0, 1) is the function t 7→ ψ
(
(b−a)t+a

)
:

(0, 1)→ R; its image is ψ(I).

Notation about “changing the last variable”: For ϕ : (0, 1)→ R we set

Iϕ : (0, 1)m+1 → Rm+1, (t1, . . . , tm, tm+1) 7→
(
t1, . . . , tm, ϕ(tm+1)

)
,

and for f : X → Rn, X ⊆ Rm+1 we set

fϕ := f ◦ Iϕ : (Iϕ)
−1(X)→ Rn, (t1, . . . , tm, tm+1) 7→ f

(
t1, . . . , tm, ϕ(tm+1)

)
.

Lemma 7.13. Let f : U → R, U ⋐ (0, 1)m+1, be a strongly bounded definable C1-function such that ∂f/∂xi

is strongly bounded for i = 1, . . . ,m. Then there is for each k ⩾ 1 a k-parametrization Φ of a cofinite subset

of (0, 1) and a set V ⋐ U such that for every ϕ ∈ Φ: Iϕ(V ) ⊆ U , fϕ is of class C1 on V , and ∂fϕ/∂xi is

strongly bounded on V , for i = 1, . . . ,m+ 1.

Proof. Lemma 7.12 yields a finite F ⊆ πm+1(U) such that ∂f
∂xm+1

(−, t) is bounded, for every t ∈ πm+1(U) \F .

Set V0 := U \ π−1
m+1(F ), so V0 ⋐ U and πm+1(V0) = πm+1(U) \ F . For each t ∈ πm+1(V0) we take a point

a = a(t) ∈ (0, 1)m such that

(a, t) ∈ V0, ∥ ∂f

∂xm+1
(−, t)∥ ⩽ 2| ∂f

∂xm+1
(a, t)|.

We arrange by Proposition 4.10 that t 7→ a(t) : πm+1(V0) → Rm is definable. Let γ : πm+1(V0) → V0 be

defined by γ(t) =
(
a(t), t

)
. Let k ⩾ 1. Corollary 7.10 gives a k-reparametrization Φ0 of the map

g : πm+1(V0)→ Rm+2, t 7→
(
γ(t), f(γ(t))

)
.

We now change V0,Φ0 to V,Φ as follows. The Monotonicity Theorem 4.1 yields for each ϕ ∈ Φ0 a finite

partition Pϕ of its domain (0, 1) into subintervals and singletons such that on each interval in Pϕ the function

ϕ is either constant or strictly monotone. First, replace each ϕ ∈ Φ0 by the restrictions of ϕ to those intervals

in Pϕ on which ϕ is strictly monotone. Next, replace each of those restrictions with its normalization. The

resulting set Φ of (strictly monotone) functions is still a k-parametrization of a cofinite subset of πm+1(V0).

Now set

V := V0 ∩
⋂
ϕ∈Φ

I−1
ϕ (U) = V0 \

⋃
ϕ∈Φ

I−1
ϕ [(0, 1)m+1 \ U ].

The injectivity and continuity of the ϕ ∈ Φ gives V ⋐ U . Let ϕ ∈ Φ. Then Iϕ(V ) ⊆ U , so fϕ is of class C1 on

V in view of k ⩾ 1, and ∂fϕ/∂xi = (∂f/∂xi) ◦ Iϕ is strongly bounded on V for i = 1, . . . ,m. It only remains

to show that ∂fϕ/∂xm+1 is strongly bounded on V . For (t1, . . . , tm+1) ∈ V we have

∂fϕ
∂xm+1

(t1, . . . , tm, tm+1) = ϕ′(tm+1) ·
( ∂f

∂xm+1
◦ Iϕ

)
(t1, . . . , tm, tm+1),

and by the properties of the map a we have for all (t1, . . . , tm, tm+1) ∈ V ,

∣∣( ∂f

∂xm+1
◦ Iϕ

)
(t1, . . . , tm, tm+1)

∣∣ ⩽ 2
∣∣ ∂f

∂xm+1

(
γ ◦ ϕ)(tm+1)

∣∣.
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Combining the last two displays it is enough to strongly bound

ϕ′ · ∂f

∂xm+1
◦ (γ ◦ ϕ)

on πm+1(V ). Since Φ is a k-reparametrization of g|πm+1(V ), we have:

(i) (γ ◦ ϕ)′ is strongly bounded on πm+1(V ), and

(ii)
(
f ◦ γ ◦ ϕ

)′
is strongly bounded on πm+1(V ).

Let γ = (γ1, . . . , γm, γm+1), γi : πm+1(V0) → R. By the Chain Rule (subsection “Differentiability” in

Section 4.2), we have on πm+1(V ):

(
f ◦ γ ◦ ϕ

)′
=

m∑
i=1

(γi ◦ ϕ)′ ·
∂f

∂xi
◦ (γ ◦ ϕ) + ϕ′ · ∂f

∂xm+1
◦ (γ ◦ ϕ)

Now ∂f/∂xi for i = 1, . . . ,m is strongly bounded, so by (i) the above
∑m
i=1 is strongly bounded on πm+1(V ).

Also the left hand side is strongly bounded on πm+1(V ) by (ii), hence the remaining term ϕ′ · ∂f
∂xm+1

◦ (γ ◦ ϕ)
on the right is strongly bounded on πm+1(V ) as well, which we already know to be enough.

Corollary 7.14. Let k, n ⩾ 1, U ⋐ (0, 1)m+1 and let f : U → Rn be a strongly bounded definable C1-map.

Suppose also that ∂f/∂xi is strongly bounded for i = 1, . . . ,m. Then there is a k-parametrization Φ of a

cofinite subset of (0, 1) and a set V ⋐ U such that for every ϕ ∈ Φ: Iϕ(V ) ⊆ U , fϕ is of class C1 on V , and

∂fϕ/∂xi is strongly bounded on V for i = 1, . . . ,m+ 1.

Proof. For n = 1 this is Lemma 7.13. As an inductive assumption, let f : U → Rn be as in the hypothesis of

the corollary and Φ and V as in its conclusion. Let g : U → R be a strongly bounded definable C1-function

such that ∂g/∂xi is strongly bounded for i = 1, . . . ,m. Then the strongly bounded definable C1-map

(f, g) : U → Rn+1 has strongly bounded partial ∂(f, g)/∂xi = (∂f/∂xi, ∂g/∂xi) for i = 1, . . . ,m. It now

suffices to show that there is a k-parametrization Θ of a cofinite subset of (0, 1) and a set W ⋐ U such

that for all θ ∈ Θ: Iθ(W ) ⊆ U , (f, g)θ is of class C1 on W , and ∂(f, g)θ/∂xi is strongly bounded on W for

i = 1, . . . ,m+ 1. To construct Θ and W , let ϕ ∈ Φ. Then applying Lemma 7.13 to the function gϕ : V → R

gives a k-parametrization Ψϕ of a cofinite subset of (0, 1) and a set Vϕ ⋐ V such that for all ψ ∈ Ψϕ:

Iψ(Vϕ) ⊆ V and (gϕ)ψ = gϕ◦ψ is of class C1 on Vϕ, and ∂gϕ,ψ/∂xi is strongly bounded on Vϕ. Now we set

Θ := {ϕ ◦ ψ : ϕ ∈ Φ, ψ ∈ Ψϕ}, W :=
⋂
ϕ∈Φ

Vϕ.

It follows easily from Lemma 7.4 that Θ and W have the desired properties.

To state the next corollary, let U be a definable open subset of Rm+1. Recall that for t ∈ R we have the

definable open subset U t of Rm given by

U t = {(t1, . . . , tm) ∈ Rm : (t1, . . . , tm, t) ∈ U}.

We call a definable map f : U → Rn of class Ck in the first m variables if for every t ∈ R the (definable) map

f t : U t → Rn, (t1, . . . , tm) 7→ f(t1, . . . , tm, t)
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is of class Ck. In that case f (α) for α ∈ Nm with |α| ⩽ k denotes the definable map

(t1, . . . , tm, t) 7→ (f t)(α)(t1, . . . , tm) : U → Rn,

which for fixed t is continuous as a function of (t1, . . . , tm).

Corollary 7.15. Let k, n ⩾ 1, U ⋐ (0, 1)m+1 and let f : U → Rn be a strongly bounded definable map that is

of class Ck in the first m variables, such that f (α) is strongly bounded for all α ∈ Nm with |α| ⩽ k. Then

for every l ⩽ k there is a Vl ⋐ U and a k-parametrization Φl of a cofinite subset of (0, 1) such that for all

ϕ ∈ Φl: Iϕ(Vl) ⊆ U , fϕ is of class Ck on Vl and f
(α)
ϕ :=

(
fϕ
)(α)

is strongly bounded on Vl for all α ∈ Nm+1

with |α| ⩽ k, αm+1 ⩽ l.

Proof. The last sentence in the subsection on Ck-maps in Section 4.2 gives V0 ⋐ U such that f is of class Ck

on V0. Then V0 and Φ0 = {id|(0,1)} have the desired properties for l = 0. Suppose, inductively, that l < k

and Vl and Φl are as stated in the Corollary. Let

∆ := {α ∈ Nm+1 : |α| ⩽ k − 1, αm+1 ⩽ l},

set ñ := #∆ ·#Φl, and let F1, . . . , Fñ : Vl → Rn enumerate the set of C1-maps

{f (α)ϕ : Vl → Rn : α ∈ ∆, ϕ ∈ Φl}.

Then we can apply Corollary 7.14 to F := (F1, . . . , Fñ) : Vl → Rñ·n in the role of f , and Vl, ñ · n instead of

U, n. This gives a k-parametrization Ψ of a cofinite subset of (0, 1) and a set Vl+1 ⋐ Vl such that for all ψ ∈ Ψ:

Iψ(Vl+1) ⊆ Vl, Fψ is of class C1 on Vl+1, and ∂Fψ/∂xi is strongly bounded on Vl+1 for i = 1, . . . ,m + 1.

Next we set

Φl+1 := {ϕ ◦ ψ : ϕ ∈ Φl, ψ ∈ Ψ}.

Then Φl+1 is a k-parametrization of a cofinite subset of (0, 1) and Iθ(Vl+1) ⊆ U , with fθ of class Ck for all

θ ∈ Φl+1.

Let θ = ϕ ◦ ψ with ϕ ∈ Φl, ψ ∈ Ψ and let α ∈ Nm+1, |α| ⩽ k, αm+1 ⩽ l + 1; it remains to show that then

f
(α)
θ is strongly bounded on Vl+1. If αm+1 = 0, then this holds because f

(α)
θ =

(
f
(α)
ϕ

)
ψ
and f

(α)
ϕ is strongly

bounded on Vl. Suppose that αm+1 > 0. Then α = β + (0, . . . , 0, j) with βm+1 = 0 and j = αm+1 ⩾ 1, so for

a = (a1, . . . , am, am+1) ∈ Vl+1 we have

f
(α)
θ (a) =

∂jf
(β)
θ

∂xjm+1

(a) =
∂j
(
f
(β)
ϕ

)
ψ

∂xjm+1

(a)

=

j∑
i=1

∂if
(β)
ϕ

∂xim+1

(
a1, . . . , am, ψ(am+1)

)
· pij

(
ψ(1)(am+1), . . . , ψ

(j−i+1)(am+1)
)

using Lemma 7.3 and the polynomials pij from that lemma for the last equality. Since we assumed inductively

that the
∂if

(β)
ϕ

∂xi
m+1

are strongly bounded on Vl and ψ
(1), . . . , ψ(k) are strongly bounded on (0, 1), f

(α)
θ is strongly

bounded on Vl+1.
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7.4 Finishing the proofs of the parametrization theorems

In this section we assume that our ambient o-minimal field R is ℵ0-saturated. We consider the following

statements depending on m:

(I)m For all k, n ⩾ 1, every strongly bounded definable map f : (0, 1)m → Rn has a k-reparametrization.

(II)m For all k ⩾ 1, every strongly bounded definable set X ⊆ Rm+1 has a k-parametrization.

It is clear that (I)0 and (II)0 hold; (I)1 holds by Corollary 7.10. We proceed by induction to show that (I)m
and (II)m hold for all m. So let m ⩾ 1 and suppose that (I)l holds for all l ⩽ m and that (II)l holds for all

l < m. We show that then (II)m holds and next that (I)m+1 holds. For (II)m, let k ⩾ 1 and let X ⊆ Rm+1

be definable and strongly bounded. In order to show that X has a k-parametrization we can reduce to the

case that X is a cell in Rm+1; we do the more difficult of the two cases, namely X = (f, g)Y where Y is a

(strongly bounded) cell in Rm, and f, g : Y → R are strongly bounded continuous definable functions with

f(y) < g(y) for all y ∈ Y ; the other case, where X is the graph of such a function Y → R, is left to the

reader.

Using (II)m−1 we have a k-parametrization Φ of Y . Set l := dimY . Let ϕ ∈ Φ be given. Then

ϕ : (0, 1)l → Y and (I)l gives a k-reparametrization Ψϕ of the map (f ◦ ϕ, g ◦ ϕ) : (0, 1)l → R2. For ψ ∈ Ψϕ

we have ψ : (0, 1)l → (0, 1)l, and we define θϕ,ψ : (0, 1)l+1 → X by

θϕ,ψ(s, t) :=
(
(ϕ ◦ ψ)(s), (1− t) · (f ◦ ϕ ◦ ψ)(s) + t · (g ◦ ϕ ◦ ψ)(s)

)
where (s, t) = (s1, . . . , sl, t) ∈ (0, 1)l+1. Then the set {θϕ,ψ : ϕ ∈ Φ, ψ ∈ Ψϕ} is readily seen to be a

k-parametrization of X, and we have established (II)m.

For (I)m+1 we need only do the case n = 1 by the remark following the proof of Lemma 7.9. So let k ⩾ 1

and let f : (0, 1)m+1 → R be a strongly bounded definable function; our job is to show that f has a

k-reparametrization.

In the rest of this proof t ranges over the interval (0, 1). By (I)m there is for all t a k-reparametrization of

the function f t : (0, 1)m → R given by f t(s) = f(s, t). Now R is ℵ0-saturated, and together with Definable

Selection (see end of Section 4.3 for details on this use of model-theoretic compactness) this yields an N ∈ N⩾1

and definable families (ϕt1), . . . , (ϕ
t
N ) of maps

ϕtj : (0, 1)m → (0, 1)m (j = 1, . . . , N)

such that Φt := {ϕt1, . . . , ϕtN} is for every t a k-reparametrization of f t.

Now, for j = 1, . . . , N we define the function fj : (0, 1)
m+1 → R by

fj(s, t) := f
(
ϕj(s, t), t

)
,

where ϕj : (0, 1)
m+1 → (0, 1)m is given by ϕj(s, t) := ϕtj(s). Consider the map

F :=
(
ϕ1, . . . , ϕN , f1, . . . , fN

)
: (0, 1)m+1 → RNm+N .

Then the hypotheses of Corollary 7.15 are satisfied for F and (0, 1)m+1 in the role of f and U , and Nm+N

for n: this is just restating that Φt is a k-reparametrization of f t, uniformly in t. The conclusion of that
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corollary for l = k gives a set V ⋐ (0, 1)m+1 and a k-parametrization Ψ of a cofinite subset of (0, 1) such that

for all ψ ∈ Ψ the map Fψ : (0, 1)m+1 → RNm+N is of class Ck on V with strongly bounded F
(α)
ψ on V for all

α ∈ Nm+1 with |α| ⩽ k.
For j = 1, . . . , N and ψ ∈ Ψ, let ϕj ∗ ψ : (0, 1)m+1 → (0, 1)m+1 be given by

(ϕj ∗ ψ)(s, t) :=
(
ϕj(s, ψ(t)), ψ(t)

)
=
(
ϕ
ψ(t)
j (s), ψ(t)

)
.

The images of the ψ ∈ Ψ cover a set (0, 1) \ {t1, . . . , td} and for every t the images of ϕt1, . . . , ϕ
t
N cover (0, 1)m,

and thus the images of the above ϕj ∗ ψ cover (0, 1)m+1 apart from finitely many hyperplanes xm+1 = ti.

Setting

W :=
⋃

1⩽j⩽N, ψ∈Ψ

(ϕj ∗ ψ)(V )

it follows that the definable set (0, 1)m+1\W has dimension ⩽ m. Using the now established (II)m, let Θ1 be a

k-parametrization of V and Θ2 a k-parametrization of (0, 1)m+1\W . For θ ∈ Θ2 we have θ : (0, 1)
l → (0, 1)m+1

with l ⩽ m and then (I)l yields a k-reparametrization Λθ of the function f ◦ θ : (0, 1)l → R. The required

k-reparametrization of f is now given by

{(ϕj ∗ ψ) ◦ χ : j = 1, . . . , N, ψ ∈ Ψ, χ ∈ Θ1} ∪ {θ ◦ λ̂ : θ ∈ Θ2, λ ∈ Λθ}

where λ̂ : (0, 1)m+1 → (0, 1)l (for l ⩽ m as above) is given by λ̂(t1, . . . , tm+1) := λ(t1, . . . , tl). This finishes the

proof of (I)m+1, and the induction is complete. In particular, Theorem 7.1 is now established. Theorem 7.2

requires one more easy step and we leave this to the reader.

Corollary 7.16. Let k, n ⩾ 1; suppose X ⊆ [−1, 1]n is definable, d := dimX ⩾ 0. Then there exists a finite

set Φ of definable Ck-maps f : (0, 1)d → Rn such that

(i)
⋃
f∈Φ image(f) = X;

(ii) |f (α)(t)| ⩽ 1 for all f ∈ Φ and α ∈ Nd with |α| ⩽ k and all t ∈ (0, 1)d.

Proof. Let Φ∗ be a k-parametrization of X. Then (i) holds for Φ∗ instead of Φ and (ii) holds for Φ∗ instead

of Φ, with a certain c ∈ N⩾1 in place of 1. Cover (0, 1)d with (c+ 1)d translates of the ‘box’ (0, 1c )
d and for

each such translate B, let λB : (0, 1)d → B be the obvious affine bijection. Then the set of maps f ◦ λB as f

varies over Φ∗ and B over the above translates is the required Φ, since (f ◦ λB)(α) = c−|α| ·
(
f (α) ◦ λB

)
for

such f and B and α ∈ Nd with |α| ⩽ k.

Definable Selection and ℵ0-saturation lead to a uniform version, as explained in more detail at the end of

Section 4.3:

Corollary 7.17. Let d, k,m, n be given with k, n ⩾ 1 and suppose E ⊆ Rm and

Z ⊆ E × [−1, 1]n ⊆ Rm+n

are definable with dimZ(s) = d for all s ∈ E. Then there are N ∈ N⩾1 and a definable set F ⊆ E×Rd×RNn

such that for all s ∈ E, F (s) ⊆ Rd ×RNn is the graph of a Ck-map (f1, . . . , fN ) : (0, 1)
d → (Rn)N = RNn

such that:

(i)
⋃N
j=1 image(fj) = Z(s);
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(ii) |f (α)j (t)| ⩽ 1 for j = 1, . . . , N , α ∈ Nd with |α| ⩽ k, and t ∈ (0, 1)d.

The proof of Corollary 7.17 uses that R is ℵ0-saturated, but this corollary goes through without this

assumption: pass to an ℵ0-saturated elementary extension and then go back. Thus it applies to o-minimal

expansions of the real field to give Theorem 5.3, and we can also combine it with Theorem 6.6 to give:

Corollary 7.18. Let n ⩾ 1 and let an o-minimal expansion R̃ of the real field be given. Suppose E ⊆ Rm

and Z ⊆ E × [−1, 1]n ⊆ Rm+n are definable. Then there is for every ε > 0 an e = e(ε, n) and a K with the

following property: for all s ∈ E with dimZ(s) < n and all T , at most KT ε many hypersurfaces in Rn of

degree ⩽ e are enough to cover the set Z(s)(Q, T ).

The expression “e = e(ε, n)” means: e can be chosen to depend only on ε and n. The proof below uses the

numbers ε(d, n, e) := dneD(n,e)
B(d,n,e) from Section 6.1.

Proof. Replacing E by finitely many definable subsets over each of which dimZ(s) takes a given value, we

arrange that for a certain d < n we have dimZ(s) = d for all s ∈ E. If d = 0, then we have K ∈ N⩾1

such that #Z(s) ⩽ K for all s ∈ E, and so at most K hypersurfaces in Rn of degree ⩽ 1 are enough to

cover Z(s). Assume d ⩾ 1. Take e ⩾ 1 such that ε(d, n, e) ⩽ ε and set k := b(d, n, e) + 1 as in Theorem 6.6.

Corollary 7.17 gives an N ∈ N⩾1 and for every s ∈ E maps f1, . . . , fN : (0, 1)d → Rn of class Ck such that

Z(s) =
⋃N
j=1 image(fj) and |f (α)j (t)| ⩽ 1 for j = 1, . . . , N and all α ∈ Nd with |α| ⩽ k and all t ∈ (0, 1)d.

Applying Theorem 6.6 to each map fj separately we obtain that for K := N · C(d, n, e) at most KT ε many

hypersurfaces in Rn of degree ⩽ e are enough to cover the set Z(s)(Q, T ).
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CHAPTER 8

Strengthening and Extending the Counting

Theorem

In this chapter we fix an o-minimal expansion R̃ of the real field, and definable is with respect to R̃. Throughout
n ⩾ 1 and E ⊆ Rm and X ⊆ E × Rn are definable.

A closer look at the proof of Theorem 5.8 gives useful extra information about the definable subsets V (s)

of X(s)alg: Theorem 8.4. To express this information efficiently requires the notion of a block family, which is

here simpler than in [51] and well suited to the inductive set-up of Section 5.2. See the subsection Dimension

in Section 4.2 for the local dimension dima used in defining blocks.

8.1 A block family version

Let d ⩽ n. A block in Rn of dimension d is a definable connected open subset of a semialgebraic set A ⊆ Rn

for which dimaA = d for all a ∈ A. Thus the empty subset of Rn counts as a block in Rn of dimension d,

but if B is a nonempty block in Rn of dimension d, then dimB = d. Also, a nonempty block of dimension 0

in Rn consists just of one point. A block family in Rn of dimension d is a definable set V ⊆ E ×Rn all whose

sections V (s) are blocks in Rn of dimension d. Here are two easy lemmas:

Lemma 8.1. Suppose U ⊆ Rm is open and semialgebraic, m ⩾ 1, and f : U → Rn is semialgebraic and

maps U homeomorphically onto f(U). Then f maps any block B ⊆ U in Rm of dimension d ⩽ m onto a

block f(B) in Rn of dimension d.

In the proof of Theorem 8.4 we apply Lemma 8.1 for every I ⊆ {1, . . . , n} to the map a 7→ b : {a ∈ Rn :

ai ̸= 0 for i ∈ I} → Rn with bi = a−1
i for i ∈ I and bi = ai for i /∈ I; these maps extend the maps fI from

Section 5.2.

Lemma 8.2. Let B be a block in Rn of dimension d ⩽ n. Then B is a union of connected semialgebraic

subsets of dimension d.

Proof. Take semialgebraic A ⊆ Rn such that dimaA = d for all a ∈ A, and B is an open subset of A. For

b ∈ B, take a semialgebraic open neighborhood U of b in A such that U ⊆ B. Now use that the connected

components of U are open in A, by Corollary 4.3, and thus of dimension d.

Corollary 8.3. Let Y ⊆ Rn and 1 ⩽ d ⩽ n.

(i) if B ⊆ Y and B is a block in Rn of dimension d, then B ⊆ Y alg;
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(ii) if V is a block family in Rn of dimension d, then the union of the sections of V that are contained in Y

is contained in Y alg.

For the inductive proof below we also define a block family in R0 of dimension 0 to be a definable set

V ⊆ E × R0, with E × R0 identified with E in the obvious way.

Theorem 8.4. Let ε be given. Then there are a natural number N = N(X, ε) ⩾ 1, a block family

Vj ⊆ (E × Fj)× Rn in Rn of dimension dj ⩽ n with definable Fj ⊆ Rmj , for j = 1, . . . , N , and a constant

c = c(X, ε), such that:

(i) Vj(s, t) ⊆ X(s) for j = 1, . . . , N and (s, t) ∈ E × Fj;

(ii) for all T and all s ∈ E, X(s)(Q, T ) is covered by at most cT ε blocks Vj(s, t), (1 ⩽ j ⩽ N, t ∈ Fj).

This yields an improved Theorem 5.8 as follows. Let V1, . . . , VN and c be as in Theorem 8.4. Then for all

s ∈ E the definable set V (s) ⊆ Rn given by

V (s) :=
⋃

dj⩾1,t∈Fj

Vj(s, t)

is contained in X(s)alg and N(X(s) \ V (s), T ) ⩽ cT ε for all T .

Proof. If Theorem 8.4 holds for definable sets X1, . . . , Xν ⊆ E ×Rn, ν ∈ N, then also for X = X1 ∪ · · · ∪Xν .

We shall tacitly use this below.

We proceed by induction on n, and follow the proof of Theorem 5.8 closely. Set V0(s) := interior of X(s).

Then Theorem 4.2 and Proposition 4.4 give M ∈ N⩾1 such that for all s ∈ E,

#{connected components of V0(s)} ⩽ M.

Definable Selection (Proposition 4.10) and the lexicographic ordering on Rn give definable subsets V1, . . . , VM

of E × Rn such that for all s ∈ E the sets V1(s), . . . , VM (s) are connected (possibly empty), open in V0(s),

pairwise disjoint, with V (s) =
⋃M
i=1 Vi(s). So V1, . . . , VM are block families in Rn of dimension n; we make

them the first M of the V1, . . . , VN to be constructed. Now replacing X with X \V0 we arrange that X(s) has

empty interior for all s ∈ E. Applying Lemma 8.1 to the natural extensions of the maps fI , I ⊆ {1, . . . , n},
we arrange also that X(s) ⊆ [−1, 1]n for all s ∈ E.

Next, take e and k = k(n, e) as in the proof of Theorem 5.7. So we have C = C(X, ε) ∈ R> such that for

any s ∈ E, X(s)(Q, T ) is covered by at most CT ε/2 many hypersurfaces in Rn of degree ⩽ e. Therefore it

suffices to find V1, . . . , VN and c as in the theorem but with (ii) replaced by

(ii)∗ for all T , all s ∈ E, and all hypersurfaces H of degree ⩽ e, (X(s) ∩H)(Q, T ) is covered by at most
c
CT

ε/2 blocks Vj(s, t), (1 ⩽ j ⩽ N, t ∈ Fj);

We use again the semialgebraic sets H, C1, . . . , CL ⊆ F × Rn, and the definable sets Yl ⊆ E × F × Rnl ,

l = 1, . . . , L, as in the proof of Theorem 5.7. Since nl < n, the induction assumption gives a natural number

Nl = N(Yl, ε) ⩾ 1, a block family

Wl,i ⊆
(
(E × F )×Gl,i

)
× Rnl

in Rnl of dimension dl,i ⩽ nl with definable Gl,i ⊆ Rml,i , for i = 1, . . . , Nl, and Bl = Bl(Yl, ε) ∈ R>, such
that
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(i)′ Wl,i(s, t, g) ⊆ Yl(s, t) for i = 1, . . . , Nl, (s, t, g) ∈ (E × F )×Gl,i;

(ii)′ for all T and all (s, t) ∈ E × F , Yl(s, t)(Q, T ) is covered by at most BlT
ε/2 blocks Wl,i(s, t, g),

(1 ⩽ i ⩽ Nl, g ∈ Gl,i).

Set N := N1 + · · ·+NL, and for l = 1, . . . , L, 1 ⩽ i ⩽ Nl and j = N1 + · · ·+Nl−1 + i, set Fj := F ×Gl,i,
and let Vj ⊆ (E × Fj)× Rn be the definable set given by

Vj
(
s, (t, g)

)
= Cl(t) ∩ p−1

il

(
Wl,i(s, t, g)

)
, (s ∈ E, t ∈ F, g ∈ Gl,i),

so Vj is a block family in Rn of dimension dl,i < n, by Lemma 8.1. It is easy to check that V1, . . . , VN and

c := C(B1 + · · ·+BL) are as desired.

8.2 Generalizations

Counting points over Q-linear subspaces of R. In this subsection we fix d ⩾ 1. Instead of

rational points we now allow points with coordinates in a Q-linear subspace of R of dimension ⩽ d. Let

λ = (λ1, . . . , λd) ∈ Rd, and set Qλ := Qλ1 + · · ·+Qλd ⊆ R. For a ∈ Qλ we set

Hλ(a) := min{H(q) : q ∈ Qd, q · λ = a} ∈ N⩾1.

Here q · λ := q1λ1 + · · ·+ qdλd. We define a height function Hλ on (Qλ)n ⊆ Rn by

Hλ(a) = max{Hλ(a1), . . . ,Hλ(an)} for a = (a1, . . . , an) ∈ (Qλ)n.

For Y ⊆ Rn we introduce its finite subsets Yλ(T ) and their cardinalities:

Yλ(T ) := {a ∈ Y ∩ (Qλ)n : Hλ(a) ⩽ T}, Nλ(Y, T ) := #Yλ(T ).

Theorem 8.5. Let any definable Y ⊆ Rn and any ε be given. Then there is a constant c = c(Y, d, ε) ∈ R>

such that for all T and all λ ∈ Rd,
Nλ(Y

tr, T ) ⩽ cT ε.

Proof of Theorem 8.5. First a useful lemma about blocks:

Lemma 8.6. If B is a block in Rn (of some dimension) and p, q ∈ B, then γ(0) = p and γ(1) = q for some

continuous semialgebraic path γ : [0, 1]→ B.

Proof. Even better, let B be a connected open subset of a semialgebraic set A ⊆ Rn, and let p ∈ B. We

claim: there is for every q ∈ B a continuous semialgebraic path γ : [0, 1]→ Rn with γ(0) = p, γ(1) = q, and

γ([0, 1]) ⊆ B. To see this, let B(p) be the set of all q ∈ B for which there is such a path. The sets B(p) as p

ranges over B form a partition of B, so it is enough to show that the B(p) are open in B, which reduces to

showing that B(p) is a neighborhood of p in B. Now B is open in A, so we have a semialgebraic open subset

U of A with p ∈ U ⊆ B. The connected component C of U with p ∈ C is open in U and semialgebraic by

Corollary 4.3 and the remarks preceding it. These remarks also give C ⊆ B(p).

Corollary 8.7. If B is a block in Rm (of some dimension), A is a semialgebraic subset of Rm with B ⊆ A, and
ϕ : A→ Rn is a continuous semialgebraic map such that ϕ(B) has more than one point, then ϕ(B) = ϕ(B)alg.
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Proof. Use that the ϕ-image of a path γ as in Lemma 8.6 is a connected semialgebraic subset of ϕ(B).

The next result is basically a consequence of Theorem 8.4, as the proof will show.

Theorem 8.8. Given ε, there are a natural number N = N(X, d, ε) ⩾ 1, a definable set Vj ⊆ (E×Rd×Fj)×Rn

with definable Fj ⊆ Rmj , for j = 1, . . . , N , and a constant c = c(X, d, ε), such that for j = 1, . . . , N and all

(s, λ, t) ∈ E × Rd × Fj:

(i) Vj(s, λ, t) ⊆ X(s) and Vj(s, λ, t) is connected;

(ii) if dimVj(s, λ, t) ⩾ 1, then Vj(s, λ, t) ⊆ X(s)alg,

and such that for all T and (s, λ) ∈ E×Rd, the set X(s)λ(T ) is covered by at most cT ε sections Vj(s, λ, t), (1 ⩽

j ⩽ N, t ∈ Fj).

This yields a family version of Theorem 8.5 as follows. Let V1, . . . , VN and c be as in Theorem 8.8. Then for

all s ∈ E the definable set V (s) ⊆ Rn given by

V (s) :=
⋃
{Vj(s, λ, t) : 1 ⩽ j ⩽ N, (λ, t) ∈ Rd × Fj , dimVj(s, λ, t) ⩾ 1}

is contained in X(s)alg and Nλ(X(s) \ V (s), T ) ⩽ cT ε for all T .

Proof. Let π : Rd× (Rd)n → Rn be given by π(λ, a1, . . . , an) = (λ · a1, . . . , λ · an), where a1, . . . , an ∈ Rd. Set

X∗ := {(s, λ, a1, . . . , an) ∈ (E × Rd)× (Rd)n :
(
s, π(λ, a1, . . . , an)

)
∈ X},

viewed as a definable family of subsets of (Rd)n. Note that for s ∈ E and λ ∈ Rd,

(∗) π
(
{λ} ×X∗(s, λ)

)
⊆ X(s), π

(
{λ} ×X∗(s, λ)(Q, T )

)
= X(s)λ(T ).

We apply Theorem 8.4 to X∗ in the role of X. It gives N = N(X∗, ε) ⩾ 1, a block family V ∗
j ⊆ (E × Rd ×

Fj) × (Rd)n in (Rd)n = Rdn with definable Fj ⊆ Rmj , for j = 1, . . . , N , and a constant c = c(X∗, ε) such

that:

(i)∗ V ∗
j (s, λ, t) ⊆ X∗(s, λ) for j = 1, . . . , N and (s, λ, t) in E × Rd × Fj ;

(ii)∗ for all T and all (s, λ) ∈ E × Rd, the set X∗(s, λ)(Q, T ) is covered by at most cT ε sections V ∗
j (s, λ, t),

(1 ⩽ j ⩽ N , t ∈ Fj).

Now we set for j = 1, . . . , N ,

Vj := {
(
s, λ, t, π(λ, a)

)
∈ (E × Rd × Fj)× Rn : (s, λ, t, a) ∈ V ∗

j },

so Vj(s, λ, t) = π
(
{λ}×V ∗

j (s, λ, t)
)
for (s, λ, t) ∈ E×Rd×Fj . We now show that V1, . . . , VN and c(X, d, ε) :=

c(X∗, ε) have the desired properties. Clause (i) is satisfied using (i)∗ and (∗), and (ii) is satisfied in view of

Corollary 8.7. The rest follows from (ii)∗ and (∗).
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Extending the Counting Theorem to Algebraic Points. Throughout this subsection we fix

d ⩾ 1. Instead of rational points we now count algebraic points whose coordinates are of degree at most d

over Q. We define the corresponding height of an algebraic number α ∈ R with [Q(α) : Q] ⩽ d by

Hpoly
d (α) := min{H(ξ) : ξ ∈ Qd, αd + ξ1α

d−1 + · · ·+ ξd = 0} ∈ N⩾1.

(For us this height is notationally more convenient than the height for real algebraic numbers used by Pila in

[P2]. The two heights are related as follows, where we use an extra subscript P for the height in [P2]: for

α ∈ R with [Q(α) : Q] ⩽ d,

Hpoly
P,d+1(α) ⩽ Hpoly

d (α) ⩽ Hpoly
P,d+1(α)

2.

Thus the results below for our height also hold for the other height.)

We extend the above height to all α ∈ R by Hpoly
d (α) := ∞ if [Q(α) : Q] > d, and to all points α =

(α1, . . . , αn) ∈ Rn by Hpoly
d (α) := max{Hpoly

d (α1), . . . ,H
poly
d (αn)}. For Y ⊆ Rn we introduce its finite subsets

Yd(T ) and their cardinalities:

Yd(T ) := {α ∈ Y : Hpoly
d (α) ⩽ T}, Nd(Y, T ) := #Yd(T ).

Theorem 8.9. Let Y ⊆ Rn be definable, and let ε be given. Then there is a constant c = c(Y, d, ε) such that

for all T ,

Nd(Y
tr, T ) ⩽ cT ε.

We shall use the following easy consequence of semialgebraic cell decomposition:

Lemma 8.10. Let An,d ⊆ Rn×d × Rn be the semialgebraic set

{(ξ, α) ∈ Rn×d × Rn : αdi + ξi1α
d−1
i + · · ·+ ξid = 0 for i = 1, . . . , n}.

Then we have a natural number L = L(n, d) ⩾ 1, a semialgebraic set Dl ⊆ Rn×d with a semialgebraic

continuous map ϕl : Dl → Rn, for l = 1, . . . , L, such that An,d =
⋃L
l=1 graph(ϕl). It follows that for all

α ∈ Rn with Hpoly
d (α) <∞ there is an l ∈ {1, . . . , L} and a ξ ∈ Dl such that ϕl(ξ) = α and H(ξ) = Hpoly

d (α).

Towards Theorem 8.9 we first prove something stronger:

Theorem 8.11. Let ε be given. Then there are N = N(X, d, ε) ∈ N⩾1, a definable set Vj ⊆ (E × Fj)× Rn

with definable Fj ⊆ Rmj , for j = 1, . . . , N , and a constant c = c(X, d, ε), such that for j = 1, . . . , N and all

(s, t) ∈ E × Fj:

(i) Vj(s, t) ⊆ X(s) and Vj(s, t) is connected;

(ii) if dimVj(s, t) ⩾ 1, then Vj(s, t) ⊆ X(s)alg,

and such that for all T and s ∈ E, the set X(s)d(T ) is covered by at most cT ε sections Vj(s, t), (1 ⩽ j ⩽

N, t ∈ Fj).

Proof. Let π : Rn×d×Rn → Rn×d be the obvious projection map. Take L and ϕ1 : D1 → Rn, . . . , ϕL : DL →
Rn as in Lemma 8.10. Let l ∈ {1, . . . , L}. We set

Xl := {(s, ξ, α) ∈ E ×Dl × Rn : α ∈ X(s), ϕl(ξ) = α},

Yl := {(s, ξ) ∈ E ×Dl : ξ ∈ π
(
Xl(s)

)
} = {(s, ξ) ∈ E ×Dl : ϕl(ξ) ∈ X(s)},
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so for s ∈ E we have ϕl
(
Yl(s)

)
⊆ X(s), and by Lemma 8.10, for all T ,

X(s)d(T ) =

L⋃
l=1

ϕl
(
Yl(s)(Q, T )

)
.

We now apply Theorem 8.4 to Yl in the role of X, and get Nl = Nl(Yl, ε) ∈ N⩾1, a block family Vl,i ⊆
(E × Fl,i)× Rn×d in Rn×d with definable Fl,i ⊆ Rml,i , for i = 1, . . . , Nl, and a constant cl = cl(Yl, ε) ∈ R>

such that:

(i) Vl,i(s, t) ⊆ Yl(s) for i = 1, . . . , Nl and (s, t) in E × Fl,i;

(ii) for all T and all s ∈ E, the set Yl(s)(Q, T ) is covered by at most clT
ε blocks Vl,i(s, t), (1 ⩽ i ⩽ Nl,

t ∈ Fl,i).

Set N := N1+· · ·+NL, and for 1 ⩽ i ⩽ Nl and j = N1+· · ·+Nl−1+i, set Fj := Fl,i, and let Vj ⊆ (E×Fj)×Rn

be the definable set given by

Vj(s, t) := ϕl
(
Vl,i(s, t)

)
, (s ∈ E, t ∈ Fj).

It is easily verified using Lemma 8.7 that V1, . . . , VN and c(X, d, ε) := c1 + · · ·+ cL have the properties stated

in the Theorem.

Just as with Theorem 8.8 this leads to a family version of Theorem 8.9 as follows. Let V1, . . . , VN and c be as

in Theorem 8.11. Take the definable set V ⊆ E × Rn such that for all s ∈ E,

V (s) :=
⋃
{Vj(s, t) : 1 ⩽ j ⩽ N, t ∈ Fj , dimVj(s, t) ⩾ 1}.

Then for all s ∈ E and all T we have

V (s) ⊆ X(s)alg and Nd(X(s) \ V (s), T ) ⩽ cT ε.
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Part III

Analytic Ax-Kochen-Ersov theory including

induced structure on coefficient field and

monomial group
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CHAPTER 9

The setup

In this part of the thesis we develop a extension theory for valued fields with analytic structure in parallel

to the original theory of valued fields, which in addition to AKE-type results for these structures, leads to

induced structure results for the coefficient field and monomial group.

Chapter 9 begins with an overview of our results, and then comprises a brief section on henselianity, and

a section on ultranormed rings and restricted power series over them, including the Weierstrass theorems.

At the beginning of Section 10.1, we define for any complete ultranormed ring A subject to mild conditions

the notion of A-analytic ring: each n-variable restricted power series over A yields an n-ary operation on any

A-analytic ring. Starting in Section 10.2 we specialize to the case that A is a noetherian ring with an ideal

O(A) ̸= A, such that
⋂
n O(A)

n = {0} and A is O(A)-adically complete. In Section 10.3 we define A-analytic

valuation rings and in Section 10.4 we consider immediate extensions.

In Section 11.1 we introduce affinoid sets, and in Section 11.2 we apply Weierstrass preparation and

division to investigate the structure of affinoid algebras. This allows us to complete the full array of extension

results in Section 12.1. In Section 12.2 we end with an analytic AKE-type equivalence theorem, and use it to

prove an induced structure result for coefficient fields and monomial groups.

9.1 An overview of the program

In the 1960s Ax and Kochen [3, 4, 5], and Ersov [33, 34, 35, 36] independently, developed a model theory for

henselian valuation rings with significant applications to p-adic number theory. Since then there have been

many generalizations and refinements, and AKE-theory remains a very active area of research. For example,

in the 1980s Denef and van den Dries [23, 27] saw how to handle the ring of p-adic integers with analytic

structure given by (restricted) power series. This led to the solution of a problem posed by Serre [59], and

to a theory of p-adic subanalytic sets. Using “mixed” power series this was extended to a theory of rigid

subanalytic sets over other henselian valuation rings with more complicated analytic structure by L. Lipshitz,

Z. Robinson, R. Cluckers, and others, see [44, 45, 20, 21].

An interesting part of the original AKE-theory has so far not been extended to this analytic setting: in

the equal characteristic 0 case one can add a predicate for a coefficient field (a lift of the residue field to the

ambient field), and then the structure induced on this coefficient field can be shown to be just its pure field

structure; likewise for a monomial group, that is, a lift of the value group.

In the analytic setting, there is only a partial result in this direction by Binyamini, Cluckers and Novikov

[12, Proposition 2], and the usual approaches to analytic AKE-theory—based on direct reductions to ordinary

AKE-theory by Weierstrass division “with parameters”—cannot be adapted to cover fully the induced
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structure aspect, as far as we know.

Here we do obtain the expected induced structure results in an analytic setting by taking another route,

based on developing a theory of analytic valuation rings in closer analogy with ordinary valuation theory.

Weierstrass division is still key, as in [23, 27], but now in a different way. Some of our work consists in

generalizing a substantial part of [30] (with simpler basic notions and better notation), but we require also

new ideas and tricks, in particular in Sections 10.3, 10.4, 12.1. We also remedy what seems to be a gap in [30].

Much of our analytic valuation theory is characteristic-free, but for the final analytic AKE-results

in Section 12.2 we restrict to equicharacteristic 0 with the value group a Z-group. We believe that the

equicharacteristic 0 assumption there can be replaced by “finitely ramified mixed characteristic,” but will

leave this for another occasion. As to removing the Z-group assumption, it is plausible one can do this using

Lipshitz’s mixed power series; we have not pursued this.

More on induced structure. Here we state in detail a typical case of our result on induced structure.

First we say what it is in the classical (non-analytic) setting. Let C be a (coefficient) field. This yields the

valuation ring C[[t]] of formal power series in one variable t over C. We now expand the ring C[[t]] to the

structure
(
C[[t]], C

)
: a ring with a distinguished subset. Then a classical “induced structure” result is that

if charC = 0, any set X ⊆ Cn which is definable in
(
C[[t]], C

)
is even definable in the field C. (This can

be proved along familiar lines, so we consider it as folklore knowledge, though we do not know an explicit

reference. It seems this is still open for charC > 0.) Here and below, n ranges over N = {0, 1, 2, . . . } and
“definable” means “definable with parameters from the ambient structure”.

We now equip C[[t]] with analytic structure as follows: for each n we have the (Tate) ring A⟨Y1, . . . , Yn⟩
of restricted power series in the distinct indeterminates Y1, . . . , Yn over A = C[[t]]: it consists of the formal

power series

f = f(Y1, . . . , Yn) =
∑
ν

aνY
ν1
1 · · ·Y νn , ν = (ν1, . . . , νn) ranging over Nn,

with all aν ∈ A such that aν → 0, t-adically, as |ν| = ν1 + · · ·+ νn →∞. Each such f gives rise to an n-ary

operation on C[[t]], namely

y = (y1, . . . , yn) 7→ f(y1, . . . , yn) : C[[t]]n → C[[t]].

We expand the ring C[[t]] to C[[t]]an by taking each such f as a new n-ary function symbol that names

the above n-ary operation on C[[t]]. Further expansion yields the structure
(
C[[t]]an, C

)
, and now our new

induced structure result says that any set X ⊆ Cn which is definable in
(
C[[t]]an, C

)
is even definable in the

field C. (For example, any subset of C definable in
(
C[[t]]an,C

)
is finite or its complement in C is finite.) In

fact, our induced structure result, Corollary 12.17, is stronger and more general in several ways, for example

in also allowing tN as a distinguished subset of C[[t]]. For various reasons it is more convenient to take the

fraction field C((t)) of C[[t]] as the ambient ring, equipped with its natural valuation to recover C[[t]]. For

C = C we obtain [12, Proposition 2] as a special case, as explained in Section 12.2.

Notational and terminological conventions. Throughout d,m, n range over N = {0, 1, 2, . . .};
ring means commutative ring with 1. From Section 10.3 onwards we consider valued fields. Let K be a

valued field; it is specified by a valuation ring R of the field K. Let v : K× → Γ be a valuation on K

with R = {a ∈ K : va ⩾ 0}. Here Γ = v(K×) is the (ordered) value group, and we extend v to a function
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v : K → Γ∞ = Γ ∪ {∞} by setting v(0) :=∞ and we extend the total ordering of Γ to a total ordering on

Γ∞ by Γ <∞. It will be convenient to let ≼, ≍, ≺, ≽, ≻, and ∼ denote the binary relations on K given for

x, y ∈ K by

x ≼ y :⇔ vx ⩾ vy ⇔ x = yz for some z ∈ R,

x ≍ y :⇔ x ≼ y and y ≼ x, x ≺ y :⇔ x ≼ y and x ̸≍ y,

x ≽ y :⇔ y ≼ x, x ≻ y :⇔ y ≺ x, x ∼ y ⇔ x− y ≺ x.

We let O(R) be the maximal ideal of R, and let resK := R/O(R) be the residue field. For a ∈ R we let res a

be the residue class of a in resK. If we need to indicate dependence on K we write RK , vK , ΓK instead of

R, v,Γ. The reason we use the letter R here instead of the more common O is that in Sections 11.2 and 12.1

we follow [37] in denoting the algebra of affinoid functions on a connected affinoid F by O(F ); see Chapter 11

for context and definitions of these notions.

Model theoretic arguments become important in Chapter 12, although in earlier chapters we already

construe various mathematical structures as L-structures for various first-order languages L. We deal only

with one-sorted structures, and “M⊆ N” indicates thatM is a substructure of N , for L-structuresM and

N . (One exception: at the end of Section 12.2 we refer to a 3-sorted structure from [12].)

We cite many results of classical AKE-theory from the exposition [29]. We do so for convenience and do not

suggest that the cited facts originate with [29].

9.2 Henselianity

There are a few places where we need “henselianity” outside the usual pattern of a henselian local ring. That

is why we give in this section proofs of a few basic facts about henselian pairs, which generalize henselian

local rings.

Given a ring R we let R× denote the multiplicative group of units of R. The Jacobson radical of a ring R is

the intersection of the maximal ideals of R. For the Jacobson radical J of R, if a ∈ R and a+ J ∈ (R/J)×,

then a ∈ R×. In this section X and Y are distinct indeterminates and I is an ideal of the ring R.

Lemma 9.1. Let I be contained in the Jacobson radical of R and let P (X) ∈ R[X] and a ∈ R be such that

P ′(a) ∈ R×. Then P (b) = 0 for at most one b ∈ a+ I.

Proof. Let b ∈ a+ I and P (b) = 0. Then for ε ∈ I we have r ∈ R such that

P (b+ ε) = P (b) + P ′(b)ε+ rε2 = P ′(b)ε+ rε2 = P ′(b)ε
(
1 + rP ′(b)−1ε

)
= 0,

and P ′(b), 1 + rP ′(b)−1ε ∈ R×, so ε = 0.

The pair (R, I) is henselian means:

• I is contained in the Jacobson radical of R, equivalently, 1 + I ⊆ R×;

• for all polynomials P (X) ∈ R[X] and a ∈ R with P (a) ∈ I and P ′(a) ∈ R× there exists b ∈ R such

that P (b) = 0 and a− b ∈ I.
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Thus given a maximal ideal m of the ring R, the pair (R,m) is henselian iff R is a henselian local ring in the

usual sense.

Lemma 9.2. Assume 1 + I ⊆ R×. Then the following conditions are equivalent:

(i) (R, I) is henselian;

(ii) each polynomial 1 +X + ea2X
2 + · · ·+ eanX

n with n ⩾ 2, e ∈ I, and a2, . . . , an ∈ R has a zero in R

(obviously, such a zero lies in −1 + I);

(iii) each polynomial Y n + Y n−1 + ea2Y
n−2 + · · ·+ ean with n ⩾ 2, e ∈ I, and a2, . . . , an ∈ R has a zero in

R×;

(iv) given any polynomial P (X) ∈ R[X] and a ∈ R, e ∈ I such that P (a) = eP ′(a)2 there exists b ∈ R such

that P (b) = 0 and b− a ∈ eP ′(a)R.

Proof. (i)⇒(ii) is clear. For (ii)⇔ (iii): use that for x ∈ R× and y := x−1, x is a zero in (ii) iff y is a zero in

(iii). Now assume (ii) and let P, a, e be as in the hypothesis of (iv). Let x ∈ R and consider the expansion:

P (a+ x) = P (a) + P ′(a)x+
∑
i⩾2

P(i)(a)x
i

= eP ′(a)2 + P ′(a)x+
∑
i⩾2

P(i)(a)x
i.

Set x = eP ′(a)y where y ∈ R. Then

P (a+ x) = eP ′(a)2

1 + y +
∑
i⩾2

eaiy
i


where the ai ∈ R do not depend on y. From (ii) we obtain y ∈ R such that

1 + y +
∑
i⩾2

eaiy
i = 0.

This yields an element b = a+x = a+ eP ′(a)y as required. This shows (ii)⇒ (iv), and (iv)⇒ (i) is clear.

Lemma 9.3. Suppose every element of I is nilpotent. Then (R, I) is henselian.

Proof. Consider a polynomial P (X) = a+X +
∑n
i=2 eaiX

i where n ⩾ 2 and

a, e, a2, . . . , an ∈ R, em = 0, m ⩾ 1.

By induction on m we show that P (X) has a zero in R. The case m = 1 being trivial, let m ⩾ 2. Then

P (−a+ eY ) = a+ (−a+ eY ) +

n∑
i=2

eai(−a+ eY )i = e
(
Y +

n∑
i=2

ai(−a+ eY )i
)
.

An easy computation gives f, b, b2, . . . , bn ∈ R such that

Y +

n∑
i=2

ai(−a+ eY )i = b+ Y (1 + ef) +

n∑
i=2

e2biY
i.
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Now use that 1 + ef ∈ R× and (e2)m−1 = 0.

Lemma 9.4. Let J be an ideal of R with I ⊆ J . Then the following are equivalent:

(i) (R, I) and (R/I, J/I) are henselian;

(ii) (R, J) is henselian.

Proof. The condition 1 + J ⊆ R× is easily seen to be equivalent to the conjunction of 1 + I ⊆ R×

and 1 + (J/I) ⊆ (R/I)×. This gives (ii)⇒(i). Now assume (i), and let P (X) ∈ R[X] and a ∈ R with

P (a) ∈ J, P ′(a) ∈ R×. Working modulo I this gives b ∈ R such that P (b) ∈ I and a − b ∈ J . Hence

P ′(b)− P ′(a) ∈ J , and thus P ′(b) ∈ R×, giving c ∈ R with P (c) = 0 and b− c ∈ I. Hence a− c ∈ J .

Corollary 9.5. Suppose (R, I) is henselian and J is an ideal of R contained in the nilradical
√
I of I. Then

(R, J) is henselian.

Proof. Every element of
√
I/I is nilpotent in R/I, so by Lemmas 9.3 and 9.4 the pair (R,

√
I) is henselian,

and so is (R, J).

Recall also that a local ring R is said to be henselian if the pair (R,m) is henselian, where m is the maximal

ideal of R.

9.3 Complete ultranormed rings and restricted power series

We introduce here the restricted power series that will define operations on the valuation rings considered in

later sections, where we develop an AKE-theory for these valuation rings with these extra operations. The

coefficients of these restricted power series will be from a fixed coefficient ring A which is complete with

respect to an ultranorm. We begin with defining ultranorms.

Ultranormed abelian groups. Let A be an additively written abelian group. An ultranorm on A is

a function a 7→ |a| : A→ R⩾ such that for all a, b ∈ A,

• |a| = 0⇔ a = 0;

• | − a| = |a|;

• |a+ b| ⩽ max(|a|, |b|).

Let A be equipped with the ultranorm | · | on A. We make A a metric space with metric (a, b) 7→ |a − b|.
Then A is a topological group with respect to the topology on A induced by this metric. The ultranorm

| · | : A→ R and the group operations − : A→ A and + : A×A→ A are uniformly continuous.

In the rest of this subsection A is complete with respect to its ultranorm, that is, complete with respect to

the metric above. We now discuss convergence of series with terms in A. Let (ai) = (ai)i∈I be a family in A

(that is, all ai ∈ A). We say (ai) is summable if for every ε we have |ai| < ε for all but finitely many i ∈ I. In
that case the set of i ∈ I with ai ≠ 0 is countable, and there is a unique a ∈ A such that for every ε ∈ R>

there is a finite I(ε) ⊆ I with |a−
∑
i∈J ai| < ε for all finite J ⊆ I with I(ε) ⊆ J ; this a is then denoted by∑

i∈I ai (or
∑
i ai if I is understood from the context). Instead of saying that (ai) is summable we also say

that
∑
i ai exists, or that

∑
i ai converges. Of course, if I is finite, then

∑
i ai exists and is the usual sum.

Here are simple rules, used throughout, for dealing with such (possibly infinite) sums, where (ai)i∈I is a

summable family in A:
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• if c ∈ R> and |ai| ⩽ c for all i, then |
∑
i ai| ⩽ c;

• (−ai) is summable with
∑
i−ai = −

∑
i ai;

• if (bi)i∈I is also a summable family in A, then so is (ai + bi) with∑
i

ai + bi =
∑
i

ai +
∑
i

bi;

• if i 7→ λ(i) : I → Λ is a bijection and (bλ)λ∈Λ is a family in A with ai = bλ(i) for all i ∈ I, then
∑
λ bλ

exists and equals
∑
i ai;

• if the family (aj)j∈J in A is also summable with I ∩ J = ∅, then (ak)k∈I∪J is summable with∑
k ak =

∑
i ai +

∑
j aj ;

• if I =
⋃̇
λ∈ΛIλ (disjoint union), then

∑
i∈Iλ ai exists for all λ ∈ Λ, and

∑
λ

(∑
i∈Iλ ai

)
exists and equals∑

i∈I ai.

Suppose E is a closed subgroup of A. Then

|a+ E| := inf
e∈E
|a+ e| (a ∈ A)

yields an ultranorm on the quotient group A/E with respect to which A/E is complete; we call it the quotient

norm of A/E. If the family (ai) in A is summable, then so is the family (ai + E) in A/E with its quotient

norm, and (∑
i

ai
)
+ E =

∑
i

(ai + E).

Ultranormed rings. Let A be a ring. An ultranorm on A is a function

a 7→ |a| : A→ R⩾

such that for all a, b ∈ A,

• |a| = 0⇔ a = 0, |1| = | − 1| = 1;

• |a+ b| ⩽ max(|a|, |b|);

• |ab| ⩽ |a| · |b|.

Let A be equipped with the ultranorm | · | on A. Then | − a| = |a| for all a ∈ A, so | · | is an ultranorm on the

underlying additive group of A. The function · : A×A→ A is continuous. If A is complete with respect to

its ultranorm and (ai)i∈I and (bj)j∈J are summable families in A, then (aibj)(i,j)∈I×J is summable, with

(
∑
i ai)(

∑
j bj) =

∑
(i,j) aibj .

From now on in this part of the thesis, A is a ring with 1 ̸= 0, equipped with an ultranorm | · |
such that |a| ⩽ 1 for all a ∈ A, and A is complete with respect to its ultranorm.

If a ∈ A and |a| < 1, then
∑
n a

n exists, with

(1− a)
∑
n

an = 1.
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We have the ideal O(A) := {a ∈ A : |a| < 1}, and set A := A/O(A), with the canonical ring morphism

a 7→ a = a+ O(A) : A→ A. We saw that 1+ O(A) consists entirely of units of A. Thus a ∈ A is a unit of A iff

a is a unit of A. In particular, O(A) is contained in the Jacobson radical of A. The completeness assumption

now yields Hensel’s Lemma as stated in [29, Section 2.2]: the pair (A, O(A)) is henselian. It follows that

(A,
√
O(A)) is also henselian.

Passing to A/I. Suppose the proper ideal I of A is closed. Then the quotient norm of the quotient

group A/I is an ultranorm on the ring A/I. Equipping A/I with the quotient norm, the canonical map

A→ A/I is norm decreasing, and O(A/I) is the image of O(A) under this canonical map. Next we describe

some ways of extending A to a larger complete ultranormed ring.

From A to A[[ξ]]. Let ξ = (ξ1, . . . , ξm) be a tuple of m distinct indeterminates. Here and below, when

using an expression like f =
∑
µ aµξ

µ for a series in A[[ξ]], we assume the coefficients aµ are all in A, and

µ = (µ1, . . . , µm) ranges over the elements of Nm. We also set ξµ := ξµ1

1 · · · ξµm
n and |µ| := µ1 + · · ·+ µm.

The latter conflicts with our notation for the ultranorm on A, but in practice no confusion will arise. For

f =
∑
µ aµξ

µ ∈ A[[ξ]] set ∥f∥ := maxµ |aµ|2−|µ|. This gives an ultranorm ∥ · ∥ on the ring A[[ξ]] extending

the ultranorm on A.

Lemma 9.6. A[[ξ]] is complete with respect to the ultranorm ∥ · ∥.

Proof. Let (fn) be a cauchy sequence with respect to this ultranorm, with

fn =
∑
µ

anµξ
µ.

For ε > 0, take N(ε) ∈ N such that ∥fm − fn∥ < ε for all m,n > N(ε). Now fix µ. Then for m,n > N(ε),

|amµ − anµ| < ε · 2|µ|,

so (anµ) is a cauchy sequence in A. Setting aµ := limn→∞ anµ gives f :=
∑
µ aµξ

µ in A[[ξ]], with |aµ−anµ| ⩽
ε · 2|µ| for n > N(ε), so ∥f − fn∥ ⩽ ε for n > N(ε). Hence fn → f in A[[ξ]] as n→∞.

We have an internal direct sum O(A[[ξ]]) = O(A) ⊕ (ξ1, . . . , ξm)A[[ξ]] of A-modules. For any real number

r > 1, the above material in this subsection goes through when replacing 2 by r, and yields a complete

ultranorm with the same neighborhoods of 0 ∈ A[[ξ]], so the same (ring) topology on A[[ξ]] as for r = 2.

Restricted power series over an ultranormed ring. For distinct indeterminates Y1, . . . , Yn we

let A⟨Y ⟩ = A⟨Y1, . . . , Yn⟩ be the subalgebra of the A-algebra A[[Y1, . . . , Yn]] consisting of the series
∑
ν aνY

ν

with aν → 0 as |ν| → ∞. Here and below, when using an expression like
∑
ν aνY

ν for a series in A⟨Y ⟩ it is
assumed that aν → 0 as |ν| → ∞. We extend | · | on A to an ultranorm on the ring A⟨Y ⟩ by

|
∑
ν

aνY
ν | := max

ν
|aν |,

so with respect to this ultranorm, A⟨Y ⟩ is complete and A[Y ] is dense in it. Note that for a1, . . . , an ∈ O(A)
we have |a1Y1 + · · ·+ anYn| < 1, so 1 + a1Y1 + · · ·+ anYn is a unit of the ring A⟨Y ⟩.
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For f =
∑
ν aνY

ν ∈ A⟨Y ⟩, the family (aνY
ν) in A⟨Y ⟩ is in fact summable with sum f . If |ab| = |a| · |b|

for all a, b ∈ A, then |fg| = |f | · |g| for all f, g ∈ A⟨Y ⟩. For any y = (y1, . . . , yn) ∈ An we have the evaluation

map

f =
∑
ν

aνY
ν 7→ f(y) :=

∑
ν

aνy
ν : A⟨Y ⟩ → A,

which is a A-algebra morphism with |f(y)| ⩽ |f | for all y ∈ An. If (fi)i∈I is a summable family in A⟨Y ⟩
and y ∈ An, then

∑
i fi(y) exists in A and equals (

∑
i fi)(y). The obvious inclusion of A[[Y1, . . . , Ym]] in

A[[Y1, . . . , Yn]] for m ⩽ n restricts to an inclusion of A⟨Y1, . . . , Ym⟩ in A⟨Y1, . . . , Yn⟩. For f = f(Y ) ∈ A⟨Y ⟩
we have unique fj ∈ A⟨Y1, . . . , Yj⟩ for j = 0, . . . , n such that

f(Y ) = f0 + Y1f1 + · · ·+ Ynfn.

Substitution. Besides Y = (Y1, . . . , Yn), let X = (X1, . . . , Xm) also be a tuple of distinct indeterminates.

Let f =
∑
µ aµX

µ ∈ A⟨X⟩ with µ = (µ1, . . . , µm) ranging over Nm, and g1, . . . , gm ∈ A⟨Y ⟩. Then

|aµgµ1

1 · · · gµm
m | ⩽ |aµ| → 0 as |µ| → ∞, so

f(g1, . . . , gm) :=
∑
µ

aµg
µ1

1 · · · gµm
m ∈ A⟨Y ⟩,

and for fixed g = (g1, . . . , gm) ∈ A⟨Y ⟩m the map f 7→ f(g) : A⟨X⟩ → A⟨Y ⟩ is an A-algebra morphism

with |f(g)| ⩽ |f | and f(g)(y) = f(g(y)) for y ∈ An. Moreover, if (fi) is a summable family in A⟨X⟩ and
g ∈ A⟨Y ⟩m, then

∑
i fi(g) exists in A⟨Y ⟩ and equals (

∑
i fi)(g). It follows that the above kind of composition

is associative in the following sense: let Z = (Z1, . . . , Zp) be a third tuple of distinct indeterminates, p ∈ N,
and h = (h1, . . . , hn) ∈ A⟨Z⟩n. Then(

f(g)
)
(h) = f

(
g1(h), . . . , gm(h)

)
in A⟨Z⟩.

From now on X1, X2, X3, . . . , Y1, Y2, Y3, . . . (two infinite sequences) are distinct indeterminates, and unless

specified otherwise,

X := (X1, . . . , Xm), Y := (Y1, . . . , Yn).

The natural A[[X]]-algebra isomorphism A[[X]][[Y ]]→ A[[X,Y ]] restricts to the norm preserving A⟨X⟩-algebra
isomorphism A⟨X⟩⟨Y ⟩ → A⟨X,Y ⟩ given by∑

ν

fνY
ν 7→

∑
ν

fνY
ν

where fν ∈ A⟨X⟩ for all ν and fν → 0 as |ν| → ∞, with righthand and lefthand side interpreted naturally in

A⟨X⟩⟨Y ⟩ and A⟨X,Y ⟩ respectively. We identify A⟨X⟩⟨Y ⟩ and A⟨X,Y ⟩ via this isomorphism.

Adjoining a zero of a monic polynomial to A. Let p = p(T ) ∈ A[T ] be a monic polynomial of

degree d ⩾ 1 over A, so |p| = 1 as an element of A⟨T ⟩.

Lemma 9.7. For all f ∈ A⟨T ⟩ we have |pf | = |f |. Moreover, pA⟨T ⟩ is a proper ideal of A⟨T ⟩ and is closed

in A⟨T ⟩.

Proof. For f =
∑
n anT

n ∈ A[T ] ̸=, take n maximal with |an| = |f |, and note that then the coefficient of

T d+n in pf is an + b with |b| < |an|, so |an + b| = |an| = |f |. The rest follows easily.
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Lemma 9.8. Let f ∈ A⟨T ⟩. Then there are unique q ∈ A⟨T ⟩ and r ∈ A[T ] with deg r < d such that

f = qp+ r; moreover, |f | = max(|q|, |r|) for these q, r.

Proof. For each n we have Tn = qnp+ rn with qn, rn ∈ A[T ] and deg rn < d. Thus for f =
∑
n anT

n ∈ A⟨T ⟩
we have f = qp+r with q =

∑
n anqn ∈ A⟨T ⟩ and r =

∑
n anrn ∈ A[T ] with deg r < d, and |f | = max(|q|, |r|)

for these q, r.

Uniqueness holds because for g ∈ A⟨T ⟩ with gp ∈ A[T ], deg gp < d, we have g = 0 by the proof of

Lemma 9.7.

Corollary 9.9. The composition A[T ]→ A⟨T ⟩ → A⟨T ⟩/pA⟨T ⟩, with inclusion on the left and the canonical

map on the right, is surjective and has kernel pA[T ].

Proof. Lemma 9.8 gives surjectivity. The uniquness in that lemma and division with remainder in A[T ] (by

p) yields kernel pA[T ].

The composition map of the lemma induces a ring isomorphism

A[T ]/pA[T ]→ A⟨T ⟩/pA⟨T ⟩

by means of which we identify these two rings. We also identify A with a subring of A[T ]/pA[T ] via the

injective ring morphism A→ A[T ]→ A[T ]/pA[T ]. Hence

A[T ]/pA[T ] = A[tp] = A⊕Atp ⊕ · · · ⊕Atd−1
p (internal direct sum of A-modules)

where tp is the image of T in A[T ]/pA[T ] under the canonical map A[T ]/pA[T ].

Lemma 9.10. The quotient norm of A[tp] = A⟨T ⟩/pA⟨T ⟩ satisfies

|a0 + a1tp + · · ·+ ad−1t
d−1
p | = max

i<d
|ai| for a0, . . . , ad−1 ∈ A,

and so extends the norm of A, and |tip| = 1 for i < d.

Proof. Let a0, . . . , ad−1 ∈ A and a := a0 + a1T + · · · + ad−1T
d−1 ∈ A⟨T ⟩. Then |a| = maxi<d |ai|. Let

f ∈ A⟨T ⟩; it is enough to show that then |a+ pf | ⩾ |a|. Since |pf | = |f |, this inequality certainly holds if

|a| ≠ |f |, so assume |a| = |f |. Then the proof of Lemma 9.7 yields that for some n the norm of the coefficient

of T d+n in pf equals |a|, and so |a+ pf | ⩾ |a|.

We shall denote A[tp] equipped with this quotient norm by A⟨tp⟩.

Another norm on A[tp]. Let p be as in the previous subsection, but now assume also that p =

T d +
∑
i<d piT

i with pi ∈ O(A) for all i < d. It would then be reasonable to have an ultranorm on A[tp] for

which tp has norm < 1, differing therefore from the quotient norm of Lemma 9.10 if d ⩾ 2. To accomplish

this we use A[[T ]] instead of A⟨T ⟩, with the complete ultranorm on A[[T ]] given by ∥f∥ := maxn |an|2−n for

f =
∑
n anT

n ∈ A[[T ]]. Thus 2−d ⩽ ∥p∥ < 1, and adapting the argument in the proof of Lemma 9.7 now

gives:

Lemma 9.11. For all f ∈ A[[T ]]̸= we have 2−d∥f∥ ⩽ ∥pf∥ < ∥f∥. Moreover, pA[[T ]] is a proper ideal of

A[[T ]] and is closed in A[[T ]].
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Next an analogue of Lemma 9.8:

Lemma 9.12. Let f ∈ A[[T ]]. Then there are unique q ∈ A[[T ]] and r ∈ A[T ] with deg r < d such that

f = qp+ r.

Proof. Let I be the ideal (p0, . . . , pd−1) of A. We claim that for each n,

Tn = qnp+ rn with qn, rn ∈ A[T ], rn ∈
∑
i<d

I [n/d]T i.

Letmd ⩽ n < (m+1)d, so [n/d] = m. Then from Tmd = (p−
∑
i<d piT

i)m we obtain Tn = qn1p+
∑
j<n rjnT

j

with qn1 ∈ A[T ] and all rjn ∈ Im. Using for j < n that T j = q∗j p+ r∗j with q∗j , r
∗
j ∈ A[T ], deg r∗j < d this

gives

Tn =
(
qn1 +

∑
j<n

rjnq
∗
j

)
p+

∑
j<n

rjnr
∗
j ,

so the claim holds with qn = qn1 +
∑
j<n rjnq

∗
j and rn =

∑
j<n rjnr

∗
j .

Set ρ := maxi<d |pi|. Then for qn, rn as in the claim we have ∥rn∥ ⩽ ρ[n/d], which in view of Lemma 9.11

gives ∥qn∥ ⩽ 2dmax(2−n, ρ[n/d])→ 0 as n→∞. Thus for f =
∑
n anT

n ∈ A[[T ]] we have f = qp+ r with

q =
∑
n anqn ∈ A[[T ]] and r =

∑
n anrn ∈ A[T ] with deg r < d. Uniqueness holds because for g ∈ A[[T ]] with

gp ∈ A[T ], deg gp < d, we have g = 0 by the argument in the proof of Lemma 9.7.

Corollary 9.13. The composition A[T ] → A[[T ]] → A[[T ]]/pA[[T ]], with inclusion on the left and the

canonical map on the right, is surjective and has kernel pA[T ].

Proof. Lemma 9.12 gives surjectivity. The uniqueness in that lemma and division with remainder in A[T ]

(by p) yields kernel pA[T ].

The composition map of the lemma induces a ring isomorphism

A[T ]/pA[T ]→ A[[T ]]/pA[[T ]]

by means of which we identify these two rings. We also identify A with a subring of A[T ]/pA[T ] via the

injective ring morphism A→ A[T ]→ A[T ]/pA[T ]. Hence

A[[T ]]/pA[[T ]] = A[tp] = A⟨T ⟩/pA⟨T ⟩.

as rings. We denote the ring A[[T ]]/pA[[T ]] equipped with the quotient norm ∥ · ∥ coming from (A[[T ]], ∥ · ∥)
by A[[tp]]. Thus ∥tp∥ ⩽ 1/2. Moreover:

Lemma 9.14. Let a, a0, . . . , ad−1 ∈ A. Then

(i) |a| < 1⇔ ∥a∥ < 1;

(ii) ∥a0 + a1tp + · · ·+ ad−1t
d−1
p ∥ ⩾ 2−2dmaxi<d |ai|;

(iii) O(A[[tp]]) = O(A) + tpA+ · · ·+ td−1
p A.

Proof. For (i), first note that ∥a∥ ⩽ |a|. Next, observe that for f ∈ A[[T ]] the constant term of a+ pf is a+ ε

with |ε| < 1, so if |a| = 1, then |a+ ε| = 1 and thus ∥a∥ = 1 in A[[tp]].
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For (ii), set b := a0+a1T + · · ·+ad−1T
p−1 ∈ A[[T ]], so ∥b∥ ⩾ 2−dmaxi<d |ai|. Let f ∈ A[[T ]]; it is enough

to show that then ∥b+ pf∥ ⩾ 2−d∥b∥. If ∥b∥ ̸= ∥pf∥, then ∥b+ pf∥ ⩾ ∥b∥, so the inequality holds. Assume

∥b∥ = ∥pf∥. Then ∥b∥ ⩽ ∥f∥, and the proof of Lemma 9.11 gives ∥b+pf∥ ⩾ 2−d∥f∥, hence ∥b+pf∥ ⩾ 2−d∥b∥.
As to (iii), this is clear from ∥tp∥ < 1 and (i).

Therefore the norms | · | and ∥ · ∥ on the ring A[tp] are equivalent:

2−2d|a| ⩽ ∥a∥ ⩽ |a| (a ∈ A[tp]),

and so induce the same ring topology on A[tp]. It follows that A⟨tp⟩⟨Y ⟩ and A[[tp]]⟨Y ⟩ have the same

underlying ring, denoted by A[tp]⟨Y ⟩, and equivalent norms: 2−2d|f | ⩽ ∥f∥ ⩽ |f | for f ∈ A[tp]⟨Y ⟩, where | · |,
respectively ∥ · ∥, denotes the norm of A⟨tp⟩⟨Y ⟩, respectively of A[[tp]]⟨Y ⟩. Moreover,

A[tp]⟨Y ⟩ = A⟨Y ⟩ ⊕A⟨Y ⟩tp ⊕ · · · ⊕A⟨Y ⟩td−1
p ,

an internal direct sum of A⟨Y ⟩-modules, and for f0, . . . , fd−1 ∈ A⟨Y ⟩ we have

|f0 + f1tp + · · ·+ fd−1t
d−1
p | = max

i<d
|fi|,

∥f0 + f1tp + · · ·+ fd−1t
d−1
p ∥ ⩾ 2−2dmax

i<d
|fi|.

Division with Remainder. Let n ⩾ 1, set Y ′ := (Y1, . . . , Yn−1). The inclusion A⟨Y ′⟩[Yn] ⊆
A⟨Y ′⟩⟨Yn⟩ = A⟨Y ⟩ makes A⟨Y ′⟩[Yn] a subring of A⟨Y ⟩.

Lemma 9.15. Let f ∈ A⟨Y ′⟩[Yn] be monic of degree d and g ∈ A⟨Y ⟩. Then there are unique q ∈ A⟨Y ⟩ and
r ∈ A⟨Y ′⟩[Yn] with degYn

r < d such that g = qf + r. Moreover, |g| = max(|q|, |r|) for these q, r.

Proof. This is Lemma 9.8 applied to A⟨Y ′⟩ in the role of A.

Consider A⟨X,Y1, . . . , Yj−1⟩[Yj ] likewise as a subring of A⟨X,Y ⟩ for j = 1, . . . , n. By a straightforward

induction on n the previous lemma gives:

Lemma 9.16. Let fj ∈ A⟨X,Y1, . . . , Yj−1⟩[Yj ] be monic of degree dj in Yj for j = 1, . . . , n. Then

A⟨X,Y ⟩ = (f1, . . . , fn)A⟨X,Y ⟩+
⊕

(j1,...,jn)

A⟨X⟩Y j11 · · ·Y jnn

where (j1, . . . , jn) ranges over the elements of Nn with j1 < d1, . . . , jn < dn.

Corollary 9.17. Let m = n and f(X) ∈ A⟨X⟩. Then

f(X)− f(Y ) ∈ (X1 − Y1, . . . , Xn − Yn)A⟨X,Y ⟩.

Proof. By Lemma 9.16 we have f(X)− f(Y ) =
∑n
j=1(Xj − Yj)qj + r with all qj in A⟨X,Y ⟩ and r ∈ A⟨X⟩.

Substituting Xj for Yj gives 0 = r.

We extend a 7→ a : A→ A to the ring morphism

f =
∑
ν

aνY
ν 7→ f :=

∑
ν

aνY
ν : A⟨Y ⟩ → A[Y ],
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whose kernel is O(A⟨Y ⟩) := {f ∈ A⟨Y ⟩ : |f | < 1}. Moreover,

f(g1, . . . , gm) = f
(
g1, . . . , gm

)
, (f ∈ A⟨X⟩, g1, . . . , gm ∈ A⟨Y ⟩).

For d ∈ N, call f ∈ A⟨Y ⟩ regular in Yn of degree d if f = f0 + f1Yn + · · ·+ fdY
d
n with f0, . . . , fd ∈ A[Y ′] and

fd a unit in A[Y ′]. We now extend Lemma 9.15:

Proposition 9.18 (Weierstrass Division). Suppose f ∈ A⟨Y ⟩ is regular in Yn of degree d and g ∈ A⟨Y ⟩.
Then there are q ∈ A⟨Y ⟩ and r ∈ A⟨Y ′⟩[Yn] with

g = qf + r, degYn
r < d, |g| = max(|q|, |r|).

Proof. Multiplying f by a unit of A⟨Y ′⟩ we arrange that f ∈ A[Y ] is monic in Yn of degree d. Hence

f = f0 +E where f0 ∈ A⟨Y ′⟩[Yn] is monic of degree d in Yn and E ∈ A⟨Y ⟩, |E| < 1. Now g = q0f0 + r0 with

q0 ∈ A⟨Y ⟩ and r0 ∈ A⟨Y ′⟩[Yn], degYn
r0 < d and |g| = max(|q0|, |r0|), so g = q0f + r0 + g1 with g1 = −Eq0,

and thus |g1| ⩽ |E||g|. With g1 in the role of g and iterating:

g = q0f + r0 + g1, g1 = −Eq0, |g1| ⩽ |E||g|,

g1 = q1f + r1 + g2, g2 = −Eq1, |g2| ⩽ |E|2|g|,

. . . = . . .

. . . = . . .

gk = qkf + rk + gk+1, gk+1 = −Eqk, |gk+1| ⩽ |E|k+1|g|,

. . . = . . .

where qk ∈ A⟨Y ⟩, rk ∈ A⟨Y ′⟩[Yn], degYn
rk < d and |gk| = max(|qk|, |rk|). It follows that gk, qk, rk → 0 as

k →∞. Thus we can add the right and left-hand sides in the equalities above to obtain g = qf + r where

q :=
∑
k qk ∈ A⟨Y ⟩ and r :=

∑
k rk ∈ A⟨Y ′⟩[Yn], degYn

r < d, so |g| = max(|q|, |r|).

Corollary 9.19 (Weierstrass Preparation). Suppose f ∈ A⟨Y ⟩ is regular in Yn of degree d. Then for some

unit u of A⟨Y ⟩ we have: uf ∈ A⟨Y ′⟩[Yn], and uf is monic of degree d in Yn.

Proof. We have Y dn = qf + r with q ∈ A⟨Y ⟩ and r ∈ A⟨Y ′⟩[Yn], degYn
r < d. Hence Y dn − r = qf in A[Y ], so

q is a unit of A[Y ′], hence q is a unit of A⟨Y ⟩, and thus u := q has the desired property.

A somewhat twisted argument also gives uniqueness in the last two results:

Corollary 9.20. Let f ∈ A⟨Y ⟩ be regular in Yn of degree d. Then there is only one pair (q, r) with q ∈ A⟨Y ⟩
and r ∈ A⟨Y ′⟩[Yn] with g = qf + r and degYn

r < d. There is also only one unit u of A⟨Y ⟩ such that

uf ∈ A⟨Y ′⟩[Yn], and uf is monic of degree d in Yn.

Proof. By Corollary 9.19 (just the existence of u), the uniqueness of (q, r) follows from the uniqueness in

Lemma 9.15. Next, the uniqueness of u follows from the proof of Corollary 9.19 and the uniqueness in

Proposition 9.18.

Besides n ⩾ 1 we now also assume d ⩾ 1. Under an extra assumption on A (see Lemma 9.21) we can apply

automorphisms to arrange regularity in Yn. Set

Td(Y ) :=
(
Y1 + Y d

n−1

n , . . . , Yn−1 + Y dn , Yn
)
,
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which gives a norm preserving automorphism f(Y ) 7→ f
(
Td(Y )

)
of the A-algebra A⟨Y ⟩ with inverse g(Y ) 7→

g
(
T−1
d (Y )

)
, where

T−1
d (Y ) :=

(
Y1 − Y d

n−1

n , . . . , Yn−1 − Y dn , Yn
)
.

Lemma 9.21. Assume A is a field. Let f ∈ A⟨Y ⟩ be such that f ̸= 0 in A[Y ], and d > deg f . Then

f
(
Td(Y )

)
is regular in Yn of some degree.

Proof. With f =
∑
ν aνY

ν , let (µ1, . . . , µn) be lexicographically largest among the ν ∈ Nn for which aν ̸= 0.

A straightforward computation shows that then for ℓ := µ1d
n−1 + · · ·+ µn−1d+ µn we have

f
(
Td(Y )

)
= aµY

ℓ
n + terms in A[Y ] of degree < ℓ in Yn.

Thus f
(
Td(Y )

)
is regular in Yn of degree ℓ.
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CHAPTER 10

Rings with A-analytic structure

10.1 A-rings

Given a ring R and a set E we have the ring RE of R-valued functions on E, where the ring operations are

given pointwise. A ring with A-analytic structure is a ring R together with a ring morphism

ιn : A⟨Y1, . . . , Yn⟩ → ring of R-valued functions on Rn

for every n, with the following properties:

(A1) ιn(Yk)(y1, . . . , yn) = yk, for k = 1, . . . , n and y = (y1, . . . , yn) ∈ Rn;

(A2) ιn+1 extends ιn where we identify in the obvious way a function Rn → R with a function Rn+1 → R

that does not depend on the (n+ 1)th coordinate;

(A3) for f, g1, . . . , gn ∈ A⟨Y ⟩ and y ∈ Rn we have

f(g1, . . . , gn)(y) = f
(
g1(y), . . . , gn(y)

)
.

In the last clause h(y) := ιn(h)(y) for h ∈ A⟨Y ⟩ and y ∈ Rn, a notational convention that will be in force

from now on. In other words, each h ∈ A⟨Y ⟩ defines a function Rn → R that we also denote by h. For n = 0

the above gives the ring morphism ι0 : A→ R upon identifying a function R0 → R with its only value, and

so R is an A-algebra with structural morphism ι0. Accordingly we denote for a ∈ A the element ι0(a) of

R also by a when no confusion is likely. Simple example of a ring with A-analytic structure: A itself with

ιn(f)(y) := f(y) for f ∈ A⟨Y ⟩ and y ∈ An.

We abbreviate the expression ring with A-analytic structure to A-analytic ring, or just A-ring. A good feature

of the above is that the A-rings naturally form an equational class (which is not the case for the narrower

notion of rings with analytic A-structure defined in [27], although there the third clause has a weaker form

than here.) To back this up, we introduce the language LA of A-rings: it is the language {0, 1,−,+, ·} of
rings augmented by an n-ary function symbol for each f ∈ A⟨Y ⟩ = A⟨Y1, . . . , Yn⟩, to be denoted also by

f . We construe any A-ring R in the obvious way as an LA-structure, with f as above naming the function

y 7→ f(y) : Rn → R, so the A-rings are exactly the models of an equational LA-theory, and for any LA-term
t(Z1, . . . , Zn) there is an f ∈ A⟨Y ⟩ such that t(z) = f(z) for every A-ring R and z ∈ Rn.

Example. Let A0 be a ring with 1 ̸= 0 and A := A0[[t]], the power series ring in one variable t over A0, with

the (complete) ultranorm given by |f | = 2−n for f ∈ tnA \ tn+1A. Let ι : A0 → k be a ring morphism into a
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field k, let Γ be an ordered abelian group with a distinguished element 1 > 0. We identify Z with its image

in Γ via k 7→ k · 1, which makes Z an ordered subgroup of Γ. (We do not assume here that 1 is the least

positive element of Γ.) This yields the Hahn field K = k((tΓ)) with its valuation ring k[[tΓ
⩾
]] ⊇ k[[t]]. Now ι

extends to the ring morphism A→ k[[tΓ
⩾
]],∑

n

cnt
n 7→

∑
n

ι(cn)t
n ∈ k[[t]] (with all cn ∈ A0).

We have a natural A-analytic structure (ιn) on k[[tΓ
⩾
]], where ι0 is the above ring morphism A→ k[[tΓ

⩾
]],

and more generally, for f =
∑
aνY

ν in A⟨Y ⟩ and y ∈ (k[[tΓ
⩾
]])n,

ιn(f)(y) :=
∑
ν

ι0(aν)y
ν ∈ k[[tΓ

⩾

]].

(To verify (A3) in this case, note that if (fi) is a summable family in A⟨Y ⟩ and y ∈ (k[[tΓ
⩾
]])n, then

∑
i fi(y)

exists in k[[tΓ
⩾
]] and equals (

∑
i fi)(y).) Note that ι0(A) is the subring ι(A0)[[t]] of k[[t]].

Returning to the general setting, let R be an A-ring. Among its units are clearly the elements 1 + a1y1 +

· · ·+ anyn for a1, . . . , an ∈ O(A) and y1, . . . , yn ∈ R.
Any ideal I of R yields a congruence relation for the A-analytic structure of R. This means: for any

f ∈ A⟨Y ⟩ and any x, y ∈ Rn with x ≡ y mod I (that is, x1 − y1, . . . , xn − yn ∈ I), we have f(x) ≡ f(y)

mod I, an immediate consequence of Corollary 9.17. Thus R/I is an A-ring, given by

f(y1 + I, . . . , yn + I) := f(y1, . . . , yn) + I (f ∈ A⟨Y ⟩, (y1, . . . , yn) ∈ Rn).

This construal of R/I as an A-ring is part of our goal of developing some algebra for A-rings analogous to

ordinary facts about rings. But we need some extra notational flexibility in dealing with indeterminates,

as we already tacitly used in this argument about R/I: we do not want to be tied down to the particular

sequence of indeterminates Y1, Y2, . . . used in the definition of A-analytic structure. Namely, for any

tuple Z = (Z1, . . . , Zn) of distinct indeterminates, not necessarily among the X1, X2, . . . , Y1, Y2, . . . , any

f = f(Z) =
∑
ν aνZ

ν ∈ A⟨Z⟩ and z ∈ Rn we set f(z) :=
(
ιnf(Y )

)
(z), where f(Y ) :=

∑
ν aνY

ν ∈ A⟨Y ⟩.
This is in harmony with other notational conventions: Let V,Z1, . . . , Zn be distinct variables. Identifying

A⟨Z⟩ = A⟨Z1, . . . , Zn⟩ as usual with a subring of A⟨V,Z⟩, this harmony means that for f ∈ A⟨Z⟩ and
(v, z1, . . . , zn) in R

n+1 we have f(z1, . . . , zn) = f(v, z1, . . . , zn), where the last f refers to the image of the

series f ∈ A⟨Z⟩ in A⟨V,Z⟩. Thus we can add dummy variables on the left. We can also add them at other

places: identifying f ∈ A⟨Z⟩ with its image in A⟨Z1, . . . , Zi, V, Zi+1, . . . , Zn⟩ as usual, where 1 ⩽ i ⩽ n, we

have likewise

f(z1, . . . , zn) = f(z1, . . . , zi, v, zi+1, . . . , zn)

for (z1, . . . , zi, v, zi+1, . . . , zn) ∈ Rn+1. We shall tacitly use these facts.

Henselianity Again. Let R be an A-ring. Note that O(A)R, that is, the ideal of R generated by ι0
(
O(A)

)
,

is contained in the Jacobson radical of R, because for a1, . . . , an ∈ O(A) the series 1 + a1Y1 + · · ·+ anYn is

a unit of A⟨Y ⟩. In later sections we consider the case that R is a valuation ring whose maximal ideal is√
O(A)R, and then the following is relevant:

Lemma 10.1. The pair (R, O(A)R) is henselian, hence so is (R,
√
O(A)R).
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Proof. Let n = 1, so Y = Y1. We show that any polynomial

f(Y ) = 1 + Y + z2Y
2 + · · ·+ zNY

N ∈ R[Y ], (N ∈ N⩾2)

with z2, . . . , zN ∈ O(A)R has a zero in R. Take m and x ∈ Rm such that

z2 = g2(x), . . . , zN = gN (x), g2, . . . , gN ∈ O(A)A[X] ⊆ O(A)A⟨X⟩.

Then F (X,Y ) := 1 + Y + g2(X)Y 2 + · · ·+ gN (X)Y N ∈ A[X,Y ] = A⟨X,Y ⟩ is regular in Y of degree 1, so

F (X,Y ) = E · (Y − c) for a unit E of A⟨X,Y ⟩ and c ∈ A⟨X⟩. Thus f(Y ) has a zero c(x) in R.

Passing to A/I. Let R be an A-ring, and let (ιn) be its A-analytic structure. Let I be a closed proper

ideal of A contained in the kernel of ι0. We equip A/I with its quotient norm, and observe that the ring

morphism

A⟨Y ⟩ → (A/I)⟨Y ⟩, f :=
∑
ν

aνY
ν 7→ f/I :=

∑
ν

(aν + I)Y ν

is surjective and that its kernel contains IA⟨Y ⟩. Moreover, for f ∈ IA⟨Y ⟩ we have f(y) = 0 for all y ∈ Rn.

Lemma 10.2. Suppose a ∈ A with a /∈ A× and ρ ∈ R> are such that |ab| ⩾ ρ|b| for all b ∈ A. Then for

I := aA we have:

(i) I is a closed proper ideal of A;

(ii) the kernel of the above morphism A⟨Y ⟩ → (A/I)⟨Y ⟩ is IA⟨Y ⟩;

(iii) IA⟨Y ⟩ is a closed proper ideal of A⟨Y ⟩, the induced ring isomorphism

A⟨Y ⟩/IA⟨Y ⟩ → (A/I)⟨Y ⟩

is norm preserving, with the quotient norm on A⟨Y ⟩/IA⟨Y ⟩;

(iv) we have an (A/I)-analytic structure (ιn/I)n on R given by

(ιn/I)(f/I) := ιn(f) for f ∈ A⟨Y ⟩.

Proof. This is routine. Towards verifying (A3) for (ιn/I)n one uses (iii) to show first that for f, g1, . . . , gn ∈
A⟨Y ⟩ we have (f/I)(g1/I, . . . , gn/I) = f(g1, . . . , gn)/I.

Passing to A⟨tp⟩ and A[[tp]]. Let R be an A-ring. For x ∈ Rm we equip R with the A⟨X⟩-analytic
structure (ιn,x) given for f(X,Y ) ∈ A⟨X⟩⟨Y ⟩ = A⟨X,Y ⟩ by

ιn,xf : Rn → R, y 7→ f(x, y).

We refer to R with this A⟨X⟩-analytic structure as the (A, x)-ring R.

We now combine Lemma 10.2 with the material on A[tp] in Section 9.3 as follows. Let p(T ) ∈ A[T ] be monic

of degree d ⩾ 1, and let t ∈ R be such that p(t) = 0. Let us consider the (A, t)-ring R, that is, the ring R

with the A⟨T ⟩-analytic structure (ιn,t). Note that I := pA⟨T ⟩ is a closed proper ideal of A⟨T ⟩ contained
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in the kernel of ι0,t, and |pq| = |q| for all q ∈ A⟨T ⟩. Hence Lemma 10.2 yields an A⟨tp⟩-analytic structure

(ιn,t/I) on R. To simplify notation we set ιn,p := ιn,t/I. It is easy to check that ι0,p : A⟨tp⟩ → R extends

ι0 : A→ R, and ι0,p(tp) = t. More generally, for f0, . . . , fd−1 ∈ A⟨Y ⟩ and y ∈ Rn we have

ιn,p
(
f0 + tpf1 + · · ·+ td−1

p fd−1

)
= ιnf0 + t · ιnf1 + · · ·+ td−1 · ιnfd−1, so(

f0 + tpf1 + · · ·+ td−1
p fd−1

)
(y) = f0(y) + tf1(y) + · · ·+ td−1fd−1(y).

Next, assume also that p = T d+
∑
i<d piT

i with all pi ∈ O(A). Then (ιn,p) is also an A[[tp]]-analytic structure

on R, since A⟨tp⟩ and A[[tp]] have the same underlying ring A[tp] and have equivalent norms as described in

the subsection Another norm on A[tp] of Section 9.3.

Extensions of A-rings. Let R be an A-ring. When referring to an A-ring R∗ as extending R this

means of course that R is a subring of R∗, but also includes the requirement that the A-analytic structure of

R∗ extends that of R.

A set S ⊆ R is said to be A-closed (in R) if for all m, f ∈ A⟨X⟩ and x1, . . . , xm in S we have

f(x1, . . . , xm) ∈ S. Then S is a subring of R and the A-analytic structure of R restricts to an A-analytic

structure on S. We view such S as an A-ring so as to make the A-ring R extend S. For S ⊆ R, the A-closure
of S in R is the smallest (with respect to inclusion) A-closed subset of R that contains S.

Lemma 10.3. Let R∗ be an A-ring extending R, and y = (y1, . . . , yn) ∈ (R∗)n. Let R⟨y⟩ be the A-closure of

R ∪ {y1, . . . , yn} in R∗. Then

R⟨y⟩ =
⋃
m

{g(x, y) : x ∈ Rm, g ∈ A⟨X,Y ⟩}.

Here is a consequence of Lemma 9.16:

Lemma 10.4. Suppose R∗ is an A-ring that extends R. Let f ∈ A⟨X,Y1, . . . , Yn⟩ and x ∈ Rm, and assume

y1, . . . , yn ∈ R∗ are integral over R. Then

f(x, y1, . . . , yn) ∈ R[y1, . . . , yn].

Proof. By increasing m and accordingly extending x with extra coordinates we arrange that for j = 1, . . . , n

we have a polynomial fj(X,Yj) ∈ A[X,Yj ], monic in Yj , with fj(x, yj) = 0. Now apply Lemma 9.16.

Lemma 10.5. Let R∗ be a ring extension of R with z ∈ R∗ integral over R. Then at most one A-analytic

structure on R[z] makes R[z] an A-ring extending R.

Proof. We can assume R∗ = R[z]. Take a monic polynomial ϕ ∈ R[Z], say of degree d ⩾ 1, with ϕ(z) = 0.

Let R∗ be equipped with an A-analytic structure extending that of R, and let g ∈ A⟨Y1, . . . , Yn⟩, n ⩾ 1, and

let y1, . . . , yn ∈ R∗; we have to show that then the element g(y1, . . . , yn) ∈ R∗ does not depend on the given

A-analytic structure on R∗. We have ϕ(Z) = x00 + x01Z + · · ·+ x0,d−1Z
d−1 + Zd with x00, . . . , x0,d−1 ∈ R

and yj = xj0 + xj1z + · · ·+ xj,d−1z
d−1, xj0, . . . , xj,d−1 ∈ R, for j = 1, . . . , n. We now set m := (1 + n)d and

x := (x00, . . . , x0,d−1, x10, . . . , x1,d−1, . . . , xn0, . . . , xn,d−1) ∈ Rm,

X = (X1, . . . , Xm) :=
(
X00, . . . , X0,d−1, . . . , Xn0, . . . , Xn,d−1

)
,
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so ϕ(Z) = F (x, Z), F (X,Z) := X00 +X01Z + · · ·+X0,d−1Z
d−1 + Zd ∈ A[X,Z]. Let G(X,Z) ∈ A⟨X,Z⟩ be

the following substitution instance of g:

g
(
X10 +X11Z + · · ·+X1,d−1Z

d−1, . . . , Xn0 +Xn1Z + · · ·+Xn,d−1Z
d−1
)
.

Lemma 9.15 gives G(X,Z) = Q(X,Z)F (X,Z) + R0 + R1Z + · · · + Rd−1Z
d−1 with R0, . . . , Rd−1 ∈ A⟨X⟩,

and so g(y) = G(x, z) = R0(x) +R1(x)z + · · ·+Rd−1(x)z
d−1, which uses only the A-analytic structure on R,

not that on R∗.

Proposition 10.6. Let R∗ be a ring extension of R and integral over R. Then some A-analytic structure on

R∗ makes R∗ an A-ring extending R.

Proof. In view of Lemmas 10.4 and 10.5 this reduces to the case R∗ = R[z] where z ∈ R∗ is integral over

R. Let ϕ(Z) ∈ R[Z] be as in the proof of Lemma 10.5, in particular monic of degree d ⩾ 1 in Z. If the ring

extension R[Z]/ϕ(Z)R[Z] of R can be given an A-analytic structure extending that of R, then this is also

the case for its image R[z] under the R-algebra morphism R[Z]→ R[z] sending Z to z. Thus replacing R[z]

by R[Z]/ϕ(Z)R[Z] if necessary we arrange that R[z] is free as an R-module with basis 1, z, . . . , zd−1. We

now adopt other notation from the proof above, where n ⩾ 1 and where we introduced a tuple

X = (X1, . . . , Xm) = (X00, . . . , Xn,d−1)

of m = (n+1)d distinct variables, the polynomial F (X,Z) ∈ A[X,Z], and for any g ∈ A⟨Y ⟩ = A⟨Y1, . . . , Yn⟩
the series G = G(X,Z) ∈ A⟨X,Z⟩, and the series R0, . . . , Rd−1 ∈ A⟨X⟩. To indicate their dependence on g

we set

Gg := G, Rg,0 := R0, . . . , Rg,d−1 := Rd−1,

Rg := Rg,0 +Rg,1Z + · · ·+Rg,d−1Z
d−1 ∈ A⟨X⟩[Z].

We claim that setting g(y) := Rg(x, z) for any n ⩾ 1 and g ∈ A⟨Y ⟩ yields an A-analytic structure on R[z]

extending that on R. We just verify two items that are part of this claim: let f, g, h, g1, . . . , gn ∈ A⟨Y ⟩ and
y ∈ Rn; then

1. gh(y) = g(y)h(y);

2. f(g1, . . . , gn)(y) = f
(
g1(y), . . . , gn(y)

)
.

As to (1), we have Ggh = GgGh, so Rgh ≡ RgRh mod F in A⟨X,Z⟩. We also have R ∈ A⟨X⟩[Z] of
degree < d in Z such that RgRh ≡ R mod F in A⟨X⟩[Z]. Hence Rgh = R, and thus gh(y) = R(x, z) =

Rg(x, z)Rh(x, z) = g(y)h(y). As to (2), by Corollary 9.17 we have in A⟨X,Z⟩,

Gf(g1,...,gn) = f
(
Gg1 , . . . , Ggn

)
≡ f(Rg1 , . . . , Rgn) mod F.

Note that f(Rg1 , . . . , Rgn) is obtained by substituting Rgj ,i for Xji in Gf , for j = 1, . . . , n and i = 0, . . . , d−1

(and Z for Z), that is,

f(Rg1 , . . . , Rgn) = Gf
(
Rg1,0, . . . , Rg1,d−1, . . . , Rgn,0, . . . , Rgn,d−1, Z

)
.

97



Making the same substitution in the congruence Gf ≡ Rf mod F , using that the variables Xji with

j = 1, . . . , n and i = 0, . . . , d− 1 do not occur in F , we obtain

Gf
(
Rg1,0, . . . , Rg1,d−1, . . . , Rgn,0, . . . , Rgn,d−1, Z

)
is congruent in A⟨X,Z⟩ modulo F to

Rf (X00, . . . , X0,d−1, Rg1,0, . . . , Rg1,d−1, . . . , Rgn,0, . . . , Rgn,d−1, Z
)
,

which is in A⟨X⟩[Z] of degree < d in Z, and thus equals Rf(g1,...,gn). Since

f
(
g1(y), . . . , gn(y)

)
= Rf

(
x00, . . . , x0,d−1, Rg1,0(x), . . . , Rgn,d−1(x), z

)
,

this yields f
(
g1(y), . . . , gn(y)

)
= f(g1, . . . , gn)(y), as required.

Corollary 10.7. If R∗ is a ring extension of R and integral over R, then there is a unique A-analytic

structure on R∗ that makes R∗ an A-ring extending R.

Corollary 10.8. Let R1 and R2 be A-rings extending R and let ϕ : R1 → R2 be an R-algebra morphism

such that ϕ(R1) is integral over R. Then ϕ is a morphism of A-rings (that is, a homomorphism in the sense

of LA-structures).

Proof. The kernel of ϕ is a congruence relation on R as A-ring, so ϕ(R1) has an A-analytic structure making

ϕ : R1 → ϕ(R1) a morphism of A-rings. Since ϕ(R1) is A-closed as a subset of R2 it follows from Corollary 10.7

that this A-analytic structure on ϕ(R1) coincides with the one that makes the inclusion ϕ(R1) → R2 a

morphism of A-rings. Thus ϕ is a morphism of A-rings.

Corollary 10.9. Suppose the A-ring R∗ extends R, and zi ∈ R∗ for i ∈ I is integral over R. Then

R[zi : i ∈ I] is A-closed in R∗.

Proof. Let f(Y ) ∈ A⟨Y ⟩ and suppose y1, . . . , yn ∈ R∗ are integral over R; it suffices to show that then

f(y) ∈ R[y] where y = (y1, . . . , yn). Take x ∈ Rm and monic fj ∈ A⟨X⟩[Yj ] such that fj(x, yj) = 0 for

j = 0, . . . , n, and apply Lemma 9.16.

Defining R⟨Y ⟩. Let R be an A-ring. To define a ring R⟨Y ⟩ analogous to the polynomial ring R[Y ],

observe that polynomials over R arise from polynomials over Z by specializing: for f(X,Y ) ∈ Z[X,Y ]

and x ∈ Rm we have f(x, Y ) ∈ R[Y ]. We take this as a hint and with A instead of Z, we define for

f(X,Y ) ∈ A⟨X,Y ⟩ and x ∈ Rm the power series f(x, Y ) ∈ R[[Y ]] as follows: f(X,Y ) =
∑
ν fν(X)Y ν with

all fν ∈ A⟨X⟩, and then

f(x, Y ) :=
∑
ν

fν(x)Y
ν .

Thus for fixed x ∈ Rm the map f(X,Y ) 7→ f(x, Y ) : A⟨X,Y ⟩ → R[[Y ]] is an A-algebra morphism. We define

R⟨Y ⟩ :=
⋃
m

{f(x, Y ) : f = f(X,Y ) ∈ A⟨X,Y ⟩, x ∈ Rm} ⊆ R[[Y ]].

An easy consequence is that inside the ambient ring R[[Y ]] we have for i ⩽ n:

R⟨Y1, . . . , Yi⟩ = R⟨Y ⟩ ∩R[[Y1, . . . , Yi]].
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Lemma 10.10. Given any g1, . . . , gk ∈ R⟨Y ⟩, k ∈ N, there exists m, x ∈ Rm, and f1, . . . , fk ∈ A⟨X,Y ⟩,
such that g1 = f1(x, Y ), . . . , gk = fk(x, Y ).

Proof. Let m1, . . . ,mk ∈ N and x1 ∈ Rm1 , . . . , xk ∈ Rmk be such that

g1 = f1(x1, Y ), . . . , gk = fk(xk, Y ), f1 ∈ A⟨X1, Y ⟩, . . . , fk ∈ A⟨Xk, Y ⟩,

x1 = (x11, . . . , x1m1), . . . , x
k = (xk1, . . . , xkmk

),

X1 : = (X11, . . . , X1m1
), . . . , Xk := (Xk1, . . . , Xkmk

).

We can also arrange for m := m1 + · · ·+mk that

X = (X1, . . . , Xm) = (X1, . . . , Xk).

For f1(X,Y ) := f1(X1, Y ) ∈ A⟨X,Y ⟩, . . . , fk(X,Y ) := fk(Xk, Y ) ∈ A⟨X,Y ⟩ we then have f1(x, Y ) =

g1, . . . , fk(x, Y ) = gk for x = (x1, . . . , xk) ∈ Rm.

Corollary 10.11. R⟨Y ⟩ is a subring of R[[Y ]] with R[Y ] ⊆ R⟨Y ⟩. If R is a domain, then so is R⟨Y ⟩; if
R has no nilpotents other than 0, then neither does R⟨Y ⟩. For an A-ring R∗ extending R the inclusion

R[[Y ]]→ R∗[[Y ]] maps R⟨Y ⟩ into R∗⟨Y ⟩, so R⟨Y ⟩ is a subring of R∗⟨Y ⟩.

Proof. The claim about domains holds because it holds with R[[Y ]] in place of R⟨Y ⟩. Suppose R has no

nilpotents. With p ranging over the prime ideals of R this yields an injective “diagonal” ring morphism

R[[Y ]]→
∏

p(R/p)[[Y ]] into a ring with no nilpotents other than 0, so R[[Y ]] has no such nilpotents either.

By the remark following the definition of R⟨Y ⟩ we have for i ⩽ n the subring R⟨Y1, . . . , Yi⟩ of R⟨Y ⟩. The

ring A⟨Y ⟩ as defined in Section 9.3 is the same as the ring A⟨Y ⟩ as defined just now for R = A viewed as an

A-ring.

Corollary 10.12. Suppose the A-ring R∗ extends R and is integral over R. Then R∗⟨Y ⟩ is generated as a

ring over its subring R⟨Y ⟩ by R∗.

Proof. Using Corollary 10.9 it suffices to consider the case R∗ = R[z] where z ∈ R∗ is integral over R and

to show R∗⟨Y ⟩ = R⟨Y ⟩[z]. Let f(X,Y ) ∈ A⟨X,Y ⟩ and x ∈ (R∗)m. Towards proving f(x, Y ) ∈ R⟨Y ⟩[z], let
ϕ(z) = 0 where

ϕ(Z) = Zd + u0,d−1Z
d−1 + · · ·+ u0,0, d ⩾ 1, u0,0, . . . , u0,d−1 ∈ R.

Then for i = 1, . . . ,m we have xi = ui0 + ui1z + · · ·+ ui,d−1z
d−1 with all uij ∈ R. Let U = (Uij)0⩽i⩽m,j<d

be a tuple of distinct variables different also from the Yj and Z and set u := (uij). Then f(x, Y ) = g(u, z, Y )

where

g(U,Z, Y ) = f
(∑
j<d

U1jZ
i, . . . ,

∑
j<d

UmjZ
i, Y
)
∈ A⟨U,Z, Y ⟩.

In the ring A⟨U,Z, Y ⟩, g(U,Z, Y ) is congruent modulo Zd+U0,d−1Z
d−1+ · · ·+U0,0 to g0(U, Y )+g1(U, Y )Z+

· · ·+ gd−1(U, Y )Zd−1 for suitable g0, . . . , gd−1 ∈ A⟨U, Y ⟩, by Lemma 9.15, and for such gj we have

g(u, z, Y ) = g0(u, Y ) + g1(u, Y )z + · · ·+ gd−1(u, Y )zd−1 ∈ R⟨Y ⟩[z].
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Construing R for x ∈ Rm as an (A, x)-ring gives the same subring R⟨Y ⟩ of R[[Y ]] as when considering R as

an A-ring.

Let p(T ) ∈ A[T ] be monic of degree d ⩾ 1 with p(t) = 0, t ∈ R. Then we may construe R as an A⟨tp⟩-ring,
and this gives again the same subring R⟨Y ⟩ of R[[Y ]]. If in addition p = T d +

∑
i<d piT

i with all pi ∈ O(A)
and R is viewed accordingly as an A[[tp]]-ring, then this also yields the same R⟨Y ⟩.

R⟨Z⟩ as an A-ring. Let Z1, . . . , ZN with N ∈ N be distinct variables different from X1, X2, . . . ,

and set Z := (Z1, . . . , ZN ). We define R⟨Z⟩ = R⟨Z1, . . . , ZN ⟩ in the same way as R⟨Y1, . . . , YN ⟩, with
Z1, . . . , ZN in the role of Y1, . . . , YN . We make R⟨Z⟩ an A-ring extending R as follows. Let f ∈ A⟨Y ⟩ and
u1(x, Z), . . . , un(x, Z) in R⟨Z⟩, where u1(X,Z), . . . , un(X,Z) ∈ A⟨X,Z⟩ and x ∈ Rm. Set

g(X,Z) := f
(
u1(X,Z), . . . , un(X,Z)

)
∈ A⟨X,Z⟩.

Our aim is to define f(u1(x, Z), . . . , un(x, Z)) := g(x, Z) ∈ R⟨Z⟩. In order for this to make sense as a

definition we first show:

Lemma 10.13. Suppose vj(X,Z) ∈ A⟨X,Z⟩ and uj(x, Z) = vj(x, Z) for j = 1, . . . , n. Set h(X,Z) :=

f
(
v1(X,Z), . . . , vn(X,Z)

)
∈ A⟨X,Z⟩. Then

g(x, Z) = h(x, Z).

Proof. By Corollary 9.17 we have for distinct variables U1, . . . , Un, V1, . . . , Vn,

f(U1, . . . , Un)− f(V1, . . . , Vn) ∈ (U1 − V1, . . . , Un − Vn)A⟨U, V ⟩.

Substituting uj(X,Z) and vj(X,Z) for Uj and Vj gives

g(X,Z)− h(X,Z) ∈
(
u1(X,Z)− v1(X,Z), . . . , un(X,Z)− vn(X,Z)

)
A⟨X,Z⟩

from which we obtain the desired result by substituting x for X.

Now the next lemma shows the above does define f
(
u1(x, Z), . . . , un(x, Z)

)
:

Lemma 10.14. Let m1,m2 ∈ N, m := m1 +m2, and

X1 := (X1, . . . , Xm1
), X2 := (Xm1+1, . . . , Xm),

x1 = (x1, . . . , xm1
) ∈ Rm1 , x2 = (xm1+1, . . . , xm) ∈ Rm2 .

Suppose that the series

u1(X1, Z), . . . , un(X1, Z) ∈ A⟨X1, Z⟩, v1(X2, Z), . . . , vn(X2, Z) ∈ A⟨X2, Z⟩

are such that u1(x1, Z) = v1(x2, Z), . . . , un(x1, Z) = vn(x2, Z). Then for

g1(X1, Z) := f
(
u1(X1, Z), . . . , un(X1, Z)

)
∈ A⟨X1, Z⟩,

g2(X2, Z) := f
(
v1(X2, Z), . . . , vn(X2, Z)

)
∈ A⟨X2, Z⟩
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we have g1(x1, Z) = g2(x2, Z) in R⟨Z⟩.

Proof. Set X := (X1, X2) = (X1, . . . , Xm), and for j = 1, . . . , n,

uj(X,Z) := uj(X1, Z) ∈ A⟨X,Z⟩, vj(X,Z) := vj(X2, Z) ∈ A⟨X,Z⟩,

g(X,Z) := f
(
u1(X,Z), . . . , un(X,Z)

)
= g1(X1, Z) ∈ A⟨X,Z⟩,

h(X,Z) := f
(
v1(X,Z), . . . , vn(X,Z)

)
= g2(X2, Z) ∈ A⟨X,Z⟩.

Then for x = (x1, . . . , xm) we have uj(x, Z) = vj(x, Z) for j = 1, . . . , n, so g(x, Z) = h(x, Z) by Lemma 10.13,

and thus g1(x1, Z) = g2(x2, Z).

We have now defined for f ∈ A⟨Y ⟩ a corresponding operation

(u1, . . . , un) 7→ f(u1, . . . , un) : R⟨Z⟩n → R⟨Z⟩.

This makes R⟨Z⟩ an A-ring extending R. For f ∈ A⟨X,Z⟩ and x ∈ Rm we can interpret f(x, Z) on the

one hand as the element of R[[Z]] defined in the beginning of this subsection (with Y instead of Z), but

also as the element of R⟨Z⟩ obtained by evaluating f at the point (x, Z) ∈ R⟨Z⟩m+N according to the

A-analytic structure we gave R⟨Z⟩; one checks easily that these two interpretations give the same element of

R⟨Z⟩, so there is no conflict of notation. This also shows that R⟨Z⟩ is generated as an A-ring by its subset

R ∪ {Z1, . . . , ZN}.

For R = A as an A-ring the above yields the A-ring A⟨Z⟩ extending A. Let f = f(Y ) =
∑
ν aνY

ν ∈ A⟨Y ⟩.
One checks easily that for (g1, . . . , gn) ∈ A⟨Z⟩n the convergent sum f(g1, . . . , gn) =

∑
ν aνg

ν1
1 · · · gνnn ∈ A⟨Z⟩

equals f(g1, . . . , gn) as defined above for R = A, so this causes no conflict of notation. It is routine to check

that for any A-ring R and z ∈ RN the evaluation map g 7→ g(z) : A⟨Z⟩ → R is a morphism of A-rings. For

N = 0 this is just ι0 : A→ R.

Corollary 10.15. Let J :=
√
O(A)R. Then

(
R⟨Z⟩, JR⟨Z⟩

)
is henselian.

Proof. Applying Lemma 10.1 to the A-ring R⟨Z⟩, the pair
(
R⟨Z⟩,

√
O(A)R⟨Z⟩

)
is henselian. Now use that

JR⟨Z⟩ ⊆
√
O(A)R⟨Z⟩.

Let p(T ) = T d +
∑
i<d piT

i ∈ A[T ] with d ⩾ 1 and all pi ∈ O(A), and let t ∈ R be such that p(t) = 0. We

expand the A-ring R accordingly to an A[[tp]]-ring such that the image of tp in R is t, as described in the

subsection Passing to A⟨tp⟩ and A[[tp]]. This makes R⟨Z⟩ an A[[tp]]-ring, and as such it expands the A-ring

R⟨Z⟩.

Our next goal is to define for z ∈ RN an evaluation map g 7→ g(z) : R⟨Z⟩ → R. We do this in the next

section under a further noetherian assumption on A.

10.2 The case of noetherian A

Let A be a noetherian ring with an ideal O(A) ̸= A such that
⋂
e O(A)

e = {0} (with e ranging here and below over

N) and A is O(A)-adically complete. Taking 0 < δ < 1 and defining |a| := δn if a ∈ O(A)n\O(A)n+1 for a ∈ A ̸=

and |0| := 0 gives an ultranorm on A with respect to which A is complete, with O(A) = {a ∈ A : |a| < 1}.
Then the O(A)-adic topology is the norm-topology. Take t1, . . . , tr ∈ A, r ∈ N, such that O(A) = (t1, . . . , tr).

Below, n ⩾ 1 and Y = (Y1, . . . , Yn) as before, and λ, µ, ν range over Nn.
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Lemma 10.16. Let f =
∑
ν aνY

ν ∈ A⟨Y ⟩. Then there is d ∈ N⩾1 such that for all ν with |ν| ⩾ d we have

aν =
∑

|µ|<d aµbµν where the bµν ∈ O(A) can be chosen such that bµν → 0 as |ν| → ∞ for each fixed µ with

|µ| < d.

Proof. Since aν → 0 as |ν| → ∞, we have aν ∈ O(A)e(ν) with e(ν) ∈ N, e(ν) → ∞ as |ν| → ∞. So

aν = Pν(t1, . . . , tr) with Pν ∈ A[T1, . . . , Tr] homogeneous of degree e(ν). Take d0 ∈ N such that the ideal of

A[T1, . . . , Tr] generated by the Pν is already generated by the Pµ with |µ| < d0. Next take d ⩾ d0 in N⩾1 so

large that e(ν) > e(µ) for all µ, ν with |µ| < d0 and |ν| ⩾ d. Let |ν| ⩾ d. Then Pν =
∑

|µ|<d0 PµQµν with

each Qµν ∈ A[T1, . . . , Tr] homogeneous of degree e(ν)− e(µ). Hence

aν =
∑

|µ|<d0

aµbµν , bµν := Qµν(t1, . . . , tr) ∈ O(A),

which yields the desired result.

Let f , d, and the bµν be as in the lemma. For µ with |µ| < d we set

fµ := Y µ +
∑
|ν|⩾d

bµνY
ν ∈ A⟨Y ⟩, so f =

∑
|µ|<d

aµfµ.

Therefore O(A⟨Y ⟩) = (t1, . . . , tr)A⟨Y ⟩ and the ultranorm on A⟨Y ⟩ induced by the above ultranorm on A has

the property that for all f ∈ A⟨Y ⟩ and n,

|f | ⩽ δn ⇐⇒ f ∈ O(A⟨Y ⟩)n,

so the norm-topology of A⟨Y ⟩ is the same as its O(A⟨Y ⟩)-adic topology. Moreover, for all f ∈ A[Y ] and n,

f ∈ O(A⟨Y ⟩)n ⇐⇒ f ∈ O(A)nA[Y ],

so A⟨Y ⟩ is noetherian by [46, Theorem 8.12]. Thus A⟨Y ⟩ inherits the conditions we imposed on A at the

beginning of this section.

In the rest of this section R is an A-ring, and Z = (Z1, . . . , ZN ) as before.

Lemma 10.17. Let f =
∑
ν aν(X)Y ν ∈ A⟨X⟩⟨Y ⟩ = A⟨X,Y ⟩. Suppose x ∈ Rm and f(x, Y ) = 0, that is,

aν(x) = 0 for all ν. Then f(x, y) = 0 for all y ∈ Rn.

Proof. With A⟨X⟩ in the role of A, the above gives a finite sum decomposition f =
∑

|µ|<d aµfµ with the

fµ ∈ A⟨X,Y ⟩, which yields the desired conclusion.

We can now prove the following key universal property of the A-ring R⟨Z⟩:

Theorem 10.18. Let ϕ : R→ R∗ be an A-ring morphism and z = (z1, . . . , zN ) ∈ (R∗)N . Then ϕ extends

uniquely to an A-ring morphism R⟨Z⟩ → R∗ sending Z1, . . . , ZN to z1, . . . , zN , respectively.

Proof. Let g(Z) ∈ R⟨Z⟩. Take f(X,Z) ∈ A⟨X,Z⟩ and x ∈ Rm such that g(Z) = f(x, Z), and set

g(z) := f(ϕ(x), z) ∈ R∗. By Lemma 10.17 (with Z instead of Y ) and the usual arguments with dummy

variables, this element of R∗ depends only on g(Z) and z, not on the choice of m, f, x. Moreover, the map

g(Z) 7→ g(z) : R⟨Z⟩ → R∗ is a ring morphism that extends ϕ and sends Zj to zj for j = 1, . . . , N . One also
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verifies easily that for F ∈ A⟨Y ⟩ and g1, . . . , gn ∈ R⟨Z⟩ we have

F (g1, . . . , gn)(z) = F
(
g1(z), . . . , gn(z)

)
,

so this map R⟨Z⟩ → R∗ is an A-ring morphism.

We retain the notation g(z) introduced in the proof above. In Theorem 10.18, g ∈ R⟨Z1, . . . , Zi⟩ with i ⩽ N
gives g(z1, . . . , zi) = g(z1, . . . , zN ) where on the right we take g as an element of R⟨Z⟩. For R = R∗ and ϕ the

identity on R this theorem gives the evaluation map g 7→ g(z) : R⟨Z⟩ → R promised earlier as a morphism of

A-rings. It is also a morphism of R-algebras.

Lemma 10.19. Let z ∈ RN . Then the kernel of the morphism g 7→ g(z) : R⟨Z⟩ → R of R-algebras is the

ideal (Z1 − z1, . . . , ZN − zN )R⟨Z⟩ of R⟨Z⟩.

Proof. For N ⩾ 1, Lemma 9.15 gives R⟨Z⟩ = (ZN − zN )R⟨Z⟩+ R⟨Z1, . . . , ZN−1⟩. Proceeding inductively

we obtain R⟨Z⟩ = (Z1 − z1, . . . , ZN − zN )R⟨Z⟩+R, which gives the desired result.

Note also that the map

R⟨Z⟩ → ring of R-valued functions on RN

assigning to each g ∈ R⟨Z⟩ the function z 7→ g(z) is an R-algebra morphism.

Another special case of Theorem 10.18: let R∗ be an A-ring extending R, let ϕ be the resulting inclusion R→
R∗⟨Z⟩, and zj := Zj ∈ R∗⟨Z⟩ for j = 1, . . . , N . Then the corresponding A-ring morphism R⟨Z⟩ → R∗⟨Z⟩
is a restriction of the inclusion R[[Z]]→ R∗[[Z]] and sends f(x, Z) ∈ R⟨Z⟩ for f ∈ A⟨X,Z⟩ and x ∈ Rm to

f(x, Z) ∈ R∗⟨Z⟩. We identify R⟨Z⟩ with an A-subring of R∗⟨Z⟩ via this morphism. Thus in the situation of

Lemma 10.3 we have

R⟨y⟩ = {g(y) : g ∈ R⟨Y ⟩}.

Let I be an ideal of R. Then the canonical map R → R/I extends to the morphism R⟨Z⟩ → (R/I)⟨Z⟩ of
A-rings sending Zj to Zj for j = 1, . . . , N , and we have:

Lemma 10.20. The kernel of the above morphism R⟨Z⟩ → (R/I)⟨Z⟩ is IR⟨Z⟩.

Proof. With β ranging over NN , this morphism is a restriction of the ring morphism∑
β

cβZ
β 7→

∑
α

(cβ + I)Zβ : R[[Z]]→ (R/I)[[Z]] ( all cβ ∈ R),

so IR⟨Z⟩ is contained in the kernel. Suppose f(x, Z) is in the kernel where x ∈ Rm and f(X,Z) =∑
β aβ(X)Zβ ∈ A⟨X,Z⟩. Then all aβ(x) ∈ I, and since for some d ⩾ 1 we have an equality f(X,Z) =∑
|α|<d aα(X)fα(X,Z) with α ranging over NN and all fα(X,Z) ∈ A⟨X,Z⟩, substitution of x for X gives

f(x, Z) ∈ IR⟨Z⟩.

Corollary 10.21. Let J :=
√
O(A)R. Then JR⟨Z⟩ =

√
O(A)R⟨Z⟩.

Proof. We have O(A)R⟨Z⟩ ⊆ JR⟨Z⟩ ⊆
√
O(A)R⟨Z⟩. It remains to note that JR⟨Z⟩ is a radical ideal of

R⟨Z⟩, by Lemma 10.20 and a part of Corollary 10.11.
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Let x ∈ Rm, construe R as an (A, x)-ring, so R is equipped with a certain A⟨X⟩-analytic structure, and let

ϕ : R→ R∗ be an A-ring morphism. Then ϕ : R→ R∗ is also an A⟨X⟩-ring morphism where we construe R∗

as an (A, ϕ(x))-ring, with ϕ(x) :=
(
ϕ(x1), . . . , ϕ(xm)

)
. For z ∈ (R∗)N the unique extension of ϕ to an A-ring

morphism R⟨Z⟩ → R∗ sending Z1, . . . , ZN to z1, . . . , zN is also an A⟨X⟩-ring morphism. In other words, for

g ∈ R⟨Z⟩ and z ∈ (R∗)N the two ways of interpreting g(z) give the same element of R∗, and so this raises no

conflict of notation.

Next, let p(T ) = T d +
∑
i<d piT

i ∈ A[T ] with d ⩾ 1 and all pi ∈ O(A). The following is a routine

consequence of ∥tp∥ < 1 and Lemma 9.14:

Lemma 10.22. The ring A[tp] is noetherian, and
⋂
e O(A[[tp]])

e = {0}. The topology on A[[tp]] given by its

norm ∥ · ∥ equals its O(A[[tp]])-adic topology.

Thus A[[tp]] inherits the properties that we imposed on A in the beginning of this section. Suppose now also

that p(t) = 0, t ∈ R. We expand the A-ring R accordingly to an A[[tp]]-ring such that the image of tp in R is

t, as described in Passing to A⟨tp⟩ and A[[tp]]. As in Theorem 10.18, let ϕ : R→ R∗ be an A-ring morphism.

Then p
(
ϕ(t)

)
= 0, and we accordingly expand the A-ring R∗ to an A[[tp]]-ring such that the image of tp is

ϕ(t). Then ϕ : R → R∗ is an A[[tp]]-ring morphism and for z ∈ (R∗)N its unique extension to an A-ring

morphism R⟨Z⟩ → R∗ sending Z1, . . . , ZN to z1, . . . , zN is also an A[[tp]]-ring morphism. In other words, for

g ∈ R⟨Z⟩ and z ∈ (R∗)N the two ways of interpreting g(z) give the same element of R∗, and so this raises no

conflict of notation.

Substituting elements of R⟨Z⟩ in elements of R⟨Y ⟩. Here is another case of Theorem 10.18:

let g1, . . . , gn ∈ R⟨Z⟩ and ϕ : R→ R⟨Z⟩ the inclusion map. Then ϕ extends uniquely to the A-ring morphism

f 7→ f(g1, . . . , gn) : R⟨Y ⟩ → R⟨Z⟩

that sends Y1, . . . , Yn to g1, . . . , gn. For z ∈ RN we have

f(g1, . . . , gn)(z) = f
(
g1(z), . . . , gn(z)

)
.

This follows for example from the uniqueness in Theorem 10.18.

Let now n, d ⩾ 1. For N = n and Y = Z this yields the automorphism

f(Y ) 7→ f
(
Td(Y )

)
of the A-ring R⟨Y ⟩ and the R-algebra R⟨Y ⟩, with inverse g(Y ) 7→ g

(
T−1
d (Y )

)
.

Let f ∈ A⟨X,Z⟩, g1(X,Z), . . . , gN (X,Z) ∈ A⟨X,Z⟩, and set

h(X,Z) := f
(
X, g1(X,Z), . . . , gN (X,Z)

)
∈ A⟨X,Z⟩.

Then for x ∈ Rm we can interpret f
(
x, g1(x, Z), . . . , gN (x, Z)

)
on the one hand as h(x, Z) ∈ R⟨Z⟩, and on

the other hand as the element of R⟨Z⟩ obtained by evaluating f at the point
(
x, g1(x, Z), . . . , gN (x, Z)

)
∈

R⟨Z⟩m+N according to the A-analytic structure we gave R⟨Z⟩. By the uniqueness in Theorem 10.18 these

two elements of R⟨Z⟩ are equal, so this raises no conflict of notation.
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Introducing K⟨Y ⟩. Let the A-ring R be a domain with fraction field K. Set

K⟨Y ⟩ := {c−1g(Y ) : c ∈ R ̸=, g(Y ) ∈ R⟨Y ⟩ ⊆ K[[Y ]]}.

Thus K⟨Y ⟩ is a subring of K[[Y ]] and contains R⟨Y ⟩ as a subring. For n, d ⩾ 1 the automorphism

g(Y ) 7→ g
(
Td(Y )

)
of the A-ring R⟨Y ⟩ extends (uniquely) to an automorphism of the K-algebra K⟨Y ⟩, also

to be indicated by g 7→ g
(
Td(Y )

)
.

Lemma 10.23. K⟨Y ⟩ ∩R[[Y ]] = R⟨Y ⟩, inside the ambient ring K[[Y ]].

Proof. The inclusion ⊇ is clear. For the reverse inclusion, let g ∈ K⟨Y ⟩ ∩R[[Y ]]. Now g = c−1
∑
ν aν(x)Y

ν

with c ∈ R ̸= and
∑
ν aν(X)Y ν ∈ A⟨X,Y ⟩, x ∈ Rm. By Lemma 10.16 applied to A⟨X⟩ instead of A we have

d ∈ N⩾1 such that for all ν with |ν| ⩾ d we have aν(X) =
∑

|µ|<d aµ(X)bµν(X) where the bµν ∈ O(A⟨X⟩) are
chosen such that bµν → 0 as |ν| → ∞ for each fixed µ with |µ| < d. Put uµ := c−1aµ(x) ∈ R for |µ| < d.

Then with a tuple U = (Uµ)|µ|<d of new variables and setting

F (X,U, Y ) :=
∑
|µ|<d

UµY
ν +

∑
|ν|⩾d

( ∑
|µ|<d

bµν(X)Uµ
)
Y ν ∈ A⟨X,U, Y ⟩

we have g(Y ) = F (x, u, Y ) ∈ R⟨Y ⟩.

For y ∈ Rn and f(Y ) = c−1g(Y ) ∈ K⟨Y ⟩ with c ∈ R ̸=, g(Y ) ∈ R⟨Y ⟩, the element c−1g(y) ∈ K depends only

on f, y, not on c, g, and so we can define f(y) := c−1g(y). The map f 7→ f(y) : K⟨Y ⟩ → K is a K-algebra

morphism, extending the evaluation maps K[Y ] → K and R[Y ] → R sending Y1, . . . , Yn to y1, . . . , yn,

respectively. By Lemma 10.19 its kernel is the maximal ideal (Y1 − y1, . . . , Yn − yn)K⟨Y ⟩ of K⟨Y ⟩.

Suppose the A-ring S extends R, and is a domain with fraction field L taken as a field extension of K. Then

L[[Y ]] has subrings R⟨Y ⟩, K⟨Y ⟩, S⟨Y ⟩, L⟨Y ⟩ with K⟨Y ⟩ ⊆ L⟨Y ⟩. In this situation we have:

Lemma 10.24. Assume S is integral over R and b1, . . . , bm is a basis of the K-linear space L. Then L⟨Y ⟩
is a free K⟨Y ⟩-module with basis b1, . . . , bm.

Proof. Let g ∈ L⟨Y ⟩ and take c ∈ L× such that cg ∈ S⟨Y ⟩. Corollary 10.12 tells us that S⟨Y ⟩ is generated
as a ring over its subring R⟨Y ⟩ by S, so cg =

∑
j∈J ajgj with finite J , and aj ∈ S, gj ∈ R⟨Y ⟩ for all

j ∈ J , so g =
∑
j c

−1ajgj . Each c−1aj is a K-linear combination of b1, . . . , bm, so g = b1f1 + · · · + bmfm

with f1, . . . , fm ∈ K⟨Y ⟩. Moreover, if f1, . . . , fm ∈ K⟨Y ⟩ are not all zero, then b1f1 + · · ·+ bmfm ̸= 0, by

considering a monomial Y ν for which one of the fi has a nonzero coefficient.

10.3 Valuation A-rings

In this section A is noetherian with an ideal O(A) ̸= A, such that
⋂
e O(A)

e = {0} and A is O(A)-adically

complete. Also, R is a valuation A-ring, that is, an A-ring whose underlying ring is a valuation ring. Thus

O(A)R = ρR for some ρ ∈ ι0
(
O(A)

)
. We let O(R) denote the maximal ideal of R and k = R/O(R) its residue

field. Let K be the fraction field of R, viewed as a valued field given by its valuation ring R. We let LA≼ be

the language LA of A-rings augmented by a binary relation symbol ≼. We construe K as an LA≼-structure by

interpreting the symbols of the sublanguage {0, 1,−,+, ·} in the usual way, interpreting the binary relation
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symbol ≼ as described at the end of the Introduction for any valued field, and interpreting any n-ary function

symbol g ∈ A⟨Y1, . . . , Yn⟩ as the function

y 7→ g(y) for y ∈ Rn, y 7→ 0 for y ∈ Kn \Rn.

Then R with its A-analytic structure and dominance relation ≼ restricted to R is a substructure of the

LA≼-structure K. We define an A-extension of K to be a valued field extension of K whose valuation ring is

equipped with an A-analytic structure that makes it an extension of the A-ring R. Thus any A-extension L

of K is naturally an LA≼-structure so that K is a substructure of L.

Viability. We define R to be viable if for some t ∈ R ̸= we have

O(R) = tR =
√
O(A)R.

If R is viable and t is as above, then Γ has a least positive element, namely v(t), and so R is not a field.

In order to make our Weierstrass preparation and division theorems useful for the model theory of R as a

valuation A-ring we need viability:

In the rest of this section we assume R is viable.

This assumption is satisfied if for some t ∈ A we have O(A) = tA and O(R) = tR ̸= {0}. Our original interest

was confined to this special case, but this stronger assumption is in general not inherited by the valuation ring

of an A-extension of finite degree over K. The need to pass to such extensions in a key argument, namely the

proof of Proposition 12.4, motivated this more general setting.

Note that R is henselian, by Lemma 10.1, so for any field extension F of K which is algebraic over K

there is a unique valuation ring of F lying over R, and this valuation ring is the integral closure of R in F .

Thus by Corollary 10.7:

Corollary 10.25. If L is a valued field extension of K and is algebraic over K, then L has a unique expansion

to an A-extension of K.

In this corollary L might be an algebraic closure of K, in which case its valuation ring is the integral closure

of R in L, and unlike the maximal ideal of R, the maximal ideal of this integral closure is not principal.

By the viability assumption on R our intended model theoretic results do not apply to algebraically closed

valued fields whose valuation ring is equipped with an A-analytic structure. To avoid this assumption one

could replace the restricted power series rings over A with rings of mixed power series over A where some

variables range as before over the valuation ring and the other (formal) variables only over its maximal ideal.

This is the direction taken by Lipshitz [44]; see also Lipshitz and Robinson [45]. Our treatment can probably

be extended in this direction as well, but this will not be done here. We use the simpler device of passing

from A to an extension Ã (introduced below) as a partial substitute.

We now fix t ∈ R such that v(t) is the least positive element of Γ, equivalently, O(R) = tR. We identify Z
with its image in Γ via k 7→ kv(t), so v(t) = 1 and Z is a convex subgroup of Γ.

Lemma 10.26. Suppose L is an A-extension of K with [L : K] <∞. Then the valuation A-ring RL of L is

viable.

Proof. Since [ΓL : Γ] <∞, there are only finitely many positive elements of ΓL less than vt. Thus ΓL has
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a least positive element vs with s ∈ L. Then sn = tu with n ∈ N⩾1 and u ∈ R×
L , so s ∈

√
tRL and thus

O(RL) = sRL =
√
O(A)RL.

Lemma 10.27. Suppose K0 is a valued subfield of K and its valuation ring R0 = R ∩K0 is an A-subring of

R. Then the valuation A-ring R0 is viable.

Proof. Take ρ ∈ O(A) such that ρR = O(A)R. This gives e ∈ N⩾1 with te ≼ ι0(ρ), so 0 < v
(
ι0(ρ))

)
⩽ e. Hence

Γ0 := v(K×
0 ) ⊆ Γ has a least positive element ⩽ e, and O(R0)

e ⊆ ρR0, and thus O(R0) =
√
O(A)R0.

An A-extension of K is said to be viable if its valuation A-ring is viable.

Corollary 10.28. Let L be a viable A-extension of K and let z ∈ L be such that t ≺ z ≺ 1. Then td ≍ ze

for some e > d ⩾ 1.

Proof. Let γ be the least positive element of ΓL, so 0 < γ ⩽ vz < 1 = v(t). Let K,L play the role of K0,K

in Lemma 10.27. The proof of that lemma then gives e ⩾ 1 such that γ ⩽ 1 ⩽ eγ, and so by decreasing e if

necessary we arrange eγ = 1. Hence vz = dγ with 1 ⩽ d < e, and thus td ≍ ze.

It will be crucial to extend A to a ring Ã as follows: fix t1, . . . , tr ∈ A such that O(A) = (t1, . . . , tr). Next, fix

ω1, . . . , ωr ∈ R and e ∈ N⩾1 such that

te = t1ω1 + · · ·+ trωr.

Let ω = (ω1, . . . ,ωr) be a tuple of r distinct indeterminates, also distinct from any indeterminates that

we indicate below by roman capitals. The noetherian ring A⟨ω⟩ = A⟨ω1, . . . ,ωr⟩ inherits the conditions

imposed on A earlier, with O(A⟨ω⟩) = (t1, . . . , tr)A⟨ω⟩, and we expand the A-ring R to an A⟨ω⟩-ring by

f(ω, y) := f(ω1, . . . , ωr, y) for f ∈ A⟨ω⟩⟨Y ⟩ = A⟨ω, Y ⟩, in other words, we construe R as an (A,ω)-ring with

ω = (ω1, . . . , ωr).

Next we set p := T e − (t1ω1 + · · · + trωr) ∈ A⟨ω⟩[T ]. Then p(t) = 0, so we can apply the subsection

Passing to A⟨tp⟩ and A[[tp]] of Section 10.1 to A⟨ω⟩ in the role of A to make the A⟨ω⟩-ring R into an Ã-ring

with Ã := A⟨ω⟩[[tp]]: for f0, . . . , fe−1 ∈ A⟨ω⟩⟨Y ⟩ and y ∈ Rn,(
f0 + tpf1 + · · ·+ te−1

p fe−1

)
(y) = f0(y) + tf1(y) + · · ·+ te−1fe−1(y).

We also remind the reader of Lemma 10.22, and recall an important consequence of Section 10.2: whether we

view R as an A-ring or as an Ã-ring makes no difference for what R⟨Z⟩ is and for what g(z) ∈ R∗ is, where

g ∈ R⟨Z⟩, z ∈ (R∗)N , and R∗ is an A-ring extending R, with R∗ construed in the obvious way as an Ã-ring

extending the Ã-ring R. Note: R as an Ã-ring is viable.

Weierstrass preparation and division with parameters. Let

f =
∑
ν

aν(X)Y ν ∈ A⟨X,Y ⟩, n ⩾ 1.

We now study how Weierstrass preparation applies to f(x, Y ) for x ∈ Rm, and how this depends on x.

Lemma 10.16 with A⟨X⟩ in the role of A gives d ⩾ 1 and bµν ∈ O(A⟨X⟩) for |µ| < d and |ν| ⩾ d. As before
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we set for |µ| < d,

fµ := Y µ +
∑
|ν|⩾d

bµνY
ν ∈ A⟨X,Y ⟩, f =

∑
|µ|<d

aµfµ.

We order Nn lexicographically and for µ with |µ| < d we set

I(µ) := {λ : |λ| < d, λ < µ}, J(µ) := {λ : |λ| < d, λ > µ}, so

(∗) f =
∑

λ∈I(µ)

aλfλ + aµfµ +
∑

λ∈J(µ)

aλfλ.

Now fix µ with |µ| < d and introduce tuples

Uµ :=
(
Uλµ : λ ∈ I(µ)

)
, Vµ :=

(
Vλµ : λ ∈ J(µ)

)
of indeterminates, different from each other and from the Xi and Yj . Set

F̃µ :=
∑

λ∈I(µ)

Uλµfλ + fµ +
∑

λ∈J(µ)

tpVλµfλ ∈ Ã⟨Uµ, Vµ, X, Y ⟩,

Fµ := F̃µ
(
Uµ, Vµ, X, Td(Y )

)
∈ Ã⟨Uµ, Vµ, X, Y ⟩.

Note that for n = 1 we have Td(Y ) = Y , so Fµ = F̃µ.

Lemma 10.29. Fµ is regular of degree ℓ := µ1d
n−1 + · · ·+ µn in Yn, and so

Fµ = E · (Y ℓn +G1Y
ℓ−1
n + · · ·+Gℓ)

for a unit E of Ã⟨Uµ, Vµ, X, Y ⟩ and suitable G1, . . . , Gℓ ∈ Ã⟨Uµ, Vµ, X, Y ′⟩.

Here is a consequence of Lemma 10.29 for n = 1 (so Y = Y1):

Corollary 10.30. Let n = 1 and g(Y ) =
∑∞
j=0 cjY

j ∈ K⟨Y ⟩, g ̸= 0. Then:

(i) there is µ ∈ N with ci ≼ cµ ≻ cj whenever i ⩽ µ < j;

(ii) for the unique µ in (i) we have g(Y ) = c · r(Y ) · (Y µ + g1Y
µ−1 + · · · + gµ) with c = cµ ∈ K×,

r(Y ) ∈ R⟨Y ⟩×, and g1, . . . , gµ ∈ R.

Proof. We multiply g by an element of K× to arrange g ∈ R⟨Y ⟩. Then g(Y ) = f(x, Y ) with x ∈ Rm and

f = f(X,Y ) =
∑
j aj(X)Y j in A⟨X,Y ⟩, so cj = aj(x) for all j. Lemma 10.16 with A⟨X⟩ in the role of A

gives d ⩾ 1 and bij ∈ O(A⟨X⟩) for i < d ⩽ j such that aj =
∑
i<d aibij for all j ⩾ d. Set

γ := min
i<d

v(ci), µ := max{i < d : v(ci) = γ}.

Then (i) holds for this µ: for µ < j, distinguish the cases j < d and j ⩾ d.

For (ii) we use the identities above for n = 1 and our f . The identity (∗) yields f =
∑
i<µ aifi + aµfµ +∑

µ<i<d aifi. Substituting x for X and factoring out c := cµ = aµ(x) (possible because c ̸= 0) gives

c−1g(Y ) =
∑
i<µ

(ci/c)fi(x, Y ) + fµ(x, Y ) +
∑
µ<i<d

(ci/c)fi(x, Y ),
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so for u :=
(
ci/c : i < µ

)
∈ Rµ and v :=

(
ci/tc : µ < i < d

)
∈ Rd−1−µ we have c−1g(Y ) = Fµ(u, v, x, Y ).

Now applying Lemma 10.29 for n = 1 shows that (ii) holds with r(Y ) = E(u, v, x, Y ) and gi = Gi(u, v, x) for

i = 1, . . . , µ.

Note that the proof above uses in a crucial way that O(R) = tR.

Corollary 10.31. Let R∗ be an A-ring extending R, and suppose y ∈ R∗ is not integral over R. Then R⟨y⟩
has the following properties, with n = 1 in (i):

(i) the morphism g(Y ) 7→ g(y) : R⟨Y ⟩ → R⟨y⟩ of A-rings is an isomorphism;

(ii) R⟨y⟩ is a domain but not a valuation ring;

(iii) inside the ambient field Frac(R⟨y⟩) we have R⟨y⟩ ⊈ K(y).

Proof. For (ii), use that Y /∈ tR⟨Y ⟩ and t /∈ Y R⟨Y ⟩. For (iii), if chark ̸= 2, then the polynomial Z2− (1+ ty)

has a zero in R⟨y⟩ by Corollary 10.15, but has no zero in K(y). If chark = 2, use instead the polynomial

Z3 − (1 + ty).

We return to our f(X,Y ) ∈ A⟨X,Y ⟩ with n ⩾ 1. To find out how Weierstrass preparation for f(x, Y ) depends

on x ∈ Rm, we now introduce the quantifier-free LA≼-formulas Z(X) and Sµ(X) (for |µ| < d) in the variables

X:

Z(X) :=
∧

|µ|<d

aµ(X) = 0,

Sµ(X) := aµ(X) ̸= 0 ∧
( ∧
λ∈I(µ)

aλ(X) ≼ aµ(X)
)
∧
( ∧
µ∈J(µ)

aλ(X) ≺ aµ(X)
)
.

Lemma 10.32. For the LA≼-structure R we have the following:

(i) for all x ∈ Rm, Z(x) holds or Sµ(x) holds for some µ with |µ| < d;

(ii) suppose x ∈ Rm, |µ| < d, and Sµ(x) holds; so uλµ := aλ(x)/aµ(x) ∈ R for λ ∈ I(µ) and vλµ :=

aλ(x)/taµ(x) ∈ R for λ ∈ J(µ). Then with

uµ :=
(
uλµ : λ ∈ I(µ)

)
, vµ :=

(
vλµ : λ ∈ J(µ)

)
,

and E,G1, . . . , Gℓ as in Lemma 10.29 we have

f
(
x, Td(Y )

)
= aµ(x)Fµ(uµ, vµ, x, Y ) in R⟨Y ⟩

and Fµ(uµ, vµ, x, Y ) equals, in R⟨Y ⟩, the product

E(uµ, vµ, x, Y ) ·
(
Y ℓn +G1(uµ, vµ, x, Y

′)Y ℓ−1
n + · · ·+Gℓ(uµ, vµ, x, Y

′)
)
.

We can now prove a converse of Lemma 10.17:

Lemma 10.33. Suppose x ∈ Rm and f(x, y) = 0 for all y ∈ Rn. Then f(x, Y ) = 0.
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Proof. If Z(x) holds, then aν(x) = 0 for all ν, that is, f(x, Y ) = 0. Next assume |µ| < d and Sµ(x) ̸= 0. Then

by (ii) of Lemma 10.32 we have a monic polynomial in R[Yn] vanishing identically on R. This is impossible

as R is infinite.

Corollary 10.34. If g ∈ R⟨Y ⟩ and g(y) = 0 for all y ∈ Rn, then g = 0.

By the last corollary, the map

K⟨Y ⟩ → ring of K-valued functions on Rn

that assigns to each g ∈ K⟨Y ⟩ the function y 7→ g(y) is an injective morphism of K-algebras.

Consequences for K⟨Y ⟩ of Weierstrass division. For an algebraic closure Ka of K, the integral

closure Ra of R in Ka is the unique valuation ring of Ka dominating R, and has a unique A-analytic structure

extending that of R.

More generally, we fix below an algebraically closed valued field extension Ka of K (not necessarily an

algebraic closure of K), whose valuation ring Ra is equipped with an A-analytic structure extending that of

R. This gives rise to K⟨Y ⟩ ⊆ Ka⟨Y ⟩ and for y ∈ (Ra)n we have the evaluation map g 7→ g(y) : Ka⟨Y ⟩ → Ka,

which for y ∈ Rn extends the previous evaluation map K⟨Y ⟩ → K.

Lemma 10.35. If E is a unit of R⟨Y ⟩, then E(y) ≍ 1 for all y ∈ (Ra)n.

This is clear. The next two lemmas follow easily from (∗) and Lemma 10.32.

Lemma 10.36. Let g(Y ) =
∑
ν cνY

ν ∈ R⟨Y ⟩, g ̸= 0. Then:

(i) there is a d ⩾ 1 and an index µ ∈ Nn with |µ| < d such that

cν ≼ cµ whenever |ν| < d, cν ≺ cµ whenever |ν| ⩾ d;

(ii) if cν ≺ 1 for all ν, then g(y) ≺ 1 for all y ∈ (Ra)n.

Lemma 10.37. Let g(Y ) ∈ K⟨Y ⟩̸=, n ⩾ 1. Then for some d ∈ N⩾1 and ℓ ∈ N,

(i) g
(
Td(Y )

)
= c · E(Y ) ·

(
Y ℓn + c1(Y

′)Y ℓ−1
n + · · ·+ cl(Y

′)
)

where c ∈ K×, E(Y ) ∈ R⟨Y ⟩ is a unit, and c1(Y
′), . . . , cℓ(Y

′) ∈ R⟨Y ′⟩.

(ii) R⟨Y ⟩ =
(
Y ℓn + c1(Y

′)Y ℓ−1
n + · · ·+ cl(Y

′)
)
R⟨Y ⟩+

∑
i<ℓR⟨Y ′⟩Y in and

K⟨Y ⟩ = g
(
Td(Y )

)
K⟨Y ⟩+

∑
i<ℓ

K⟨Y ′⟩Y in.

Proof. For (ii), use a reduction to A⟨X,Y ⟩ and appeal to Lemma 9.15.

Here is a variant where we can dispense with a transformation Td:

Proposition 10.38. Let g ∈ K⟨Y ⟩, n ⩾ 1, g = g1 + · · · + gn, gj = gj(Yj) ∈ K⟨Yj⟩ for j = 1, . . . , n and

gj ̸= 0 for some j. Then for some j ∈ {1, . . . , n} and ℓ ∈ N,

g(Y ) = c · E(Y ) ·
(
Y ℓj + c1(Y

∗)Y ℓ−1
j + · · ·+ cl(Y

∗)
)

where c ∈ K×, E ∈ R⟨Y ⟩ is a unit, Y ∗ = (Y1, . . . , Yj−1, Yj+1, . . . , Yn), and where c1(Y
∗), . . . , cl(Y

∗) ∈ R⟨Y ∗⟩.
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Proof. Multiplying by a factor from K× we arrange that gj ∈ R⟨Yj⟩ for j = 1, . . . , n, and the image of

gj in k[Yj ] is nonzero for some j, say for j = n. Take m, x ∈ Rm, and Gj(X,Yj) ∈ A⟨X,Yj⟩ such that

gj(Yj) = Gj(x, Yj) for j = 1, . . . , n. Then g = G(x, Y ) for G := G1 + · · ·+Gn ∈ A⟨X,Y ⟩. We now proceed

to a simpler version of the construction in the beginning of the previous subsection.

We have Gn =
∑∞
l=0 al(X)Y ln with all al ∈ A⟨X⟩, and so gn =

∑∞
l=0 al(x)Y

l
n. Take µ ∈ N such

that aµ(x) ≍ 1 and al(x) ≺ 1 for all l > µ. Take d ∈ N>µ and bkl ∈ O(A⟨X⟩) for k < d ⩽ l such that

al =
∑
k<d akbkl for l ⩾ d and bkl → 0 as l→∞ for each fixed k < d. For i < d we set fi := Y in+

∑
l⩾d bilY

l
n ∈

A⟨X,Yn⟩, so
Gn =

∑
i<µ

aifi + aµfµ +
∑
µ<i<d

aifi.

Let U0, . . . , Uµ−1, Vµ+1, . . . , Vd−1,W be distinct indeterminates, also different from X1, X2, . . . , Y1, Y2, . . . ,

set U := (Ui : i < µ), V = (Vi : µ < i < d), and

G̃ := W · (G1 + · · ·+Gn−1) +
∑
i<µ

Uifi + fµ +
∑
µ<i<d

tpVifi ∈ Ã⟨U, V,W,X, Y ⟩.

Then for u :=
(
ai(x)/aµ(x)

)
i<µ

, v :=
(
ai(x)/taµ(x)

)
µ<i<d

, w := 1/aµ(x), we have

g = G(x, Y ) = aµ(x) · G̃(u, v, w, x, Y ).

It remains to note that G̃ is regular in Yn of degree µ, and to use Corollary 9.19.

Weierstrass division leads in the usual way to noetherianity of K⟨Y ⟩ and more:

Theorem 10.39. The integral domain K⟨Y ⟩ has the following properties:

(i) K⟨Y ⟩ is noetherian, and for every proper ideal I of K⟨Y ⟩:

(ii) there is an injective K-algebra morphism K⟨Y1, . . . , Ym⟩ → K⟨Y ⟩/I with m ⩽ n, making K⟨Y ⟩/I into

a finitely generated K⟨Y1, . . . , Ym⟩-module;

(iii) there is y ∈ (Ra)n such that f(y) = 0 for all f ∈ I.

Proof. By induction on n. The case n = 0 being obvious, let n ⩾ 1. Recall that for d ∈ N⩾1 we have the

automorphism g(Y ) 7→ g
(
Td(Y )

)
of the K-algebra K⟨Y ⟩. Let I be an ideal of K⟨Y ⟩, I ̸= {0}. Take a nonzero

g ∈ I. To show I is finitely generated we apply an automorphism as above and use Lemma 10.37 to arrange

g = Y ℓn + c1(Y
′)Y ℓ−1

n + · · ·+ cℓ(Y
′) with ℓ ∈ N, c1, . . . , cℓ ∈ R⟨Y ′⟩, and

R⟨Y ⟩ = gR⟨Y ⟩+
∑
i<ℓ

R⟨Y ′⟩Y in, K⟨Y ⟩ = gK⟨Y ⟩+
∑
i<ℓ

K⟨Y ′⟩Y in.

For ℓ = 0 this means g = 1, and we are done, so assume ℓ ⩾ 1. Then the inclusion K⟨Y ′⟩ → K⟨Y ⟩ followed by

the canonical map K⟨Y ⟩ → K⟨Y ⟩/(g) makes K⟨Y ⟩/(g) a K⟨Y ′⟩-module that is generated by the images of

the Y in with i < ℓ. Assuming inductively that K⟨Y ′⟩ is noetherian, it follows that K⟨Y ⟩/(g) is noetherian as a

K⟨Y ′⟩-module, and thus as a ring. Hence the image of I in K⟨Y ⟩/(g) is finitely generated, say by the images of

g1, . . . , gk ∈ I, k ∈ N. Then I is generated by g, g1, . . . , gk. This proves noetherianity of K⟨Y ⟩. Let now I also

be proper, that is, 1 /∈ I, and set I ′ := I ∩K⟨Y ′⟩. The natural K-algebra embedding K⟨Y ′⟩/I ′ → K⟨Y ⟩/I
makes K⟨Y ⟩/I a finitely generated K⟨Y ′⟩/I ′-module by the above. Assuming inductively that (ii) holds for
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n− 1, K⟨Y ′⟩, I ′ instead of n,K⟨Y ⟩, I yields (ii). For (iii) we can arrange that I is a maximal ideal of K⟨Y ⟩.
Then in (ii) we have m = 0, so K⟨Y ⟩/I is finite-dimensional as a vector space over K, hence algebraic over

K as a field extension of K. This gives a K-algebra morphism ϕ : K⟨Y ⟩ → Ka with kernel I and ϕ(K⟨Y ⟩)
algebraic over K. We set y := (y1, . . . , yn) =

(
ϕ(Y1), . . . , ϕ(Yn)

)
∈ (Ka)n. We claim that ϕ(R⟨Y ⟩) ⊆ Ra (and

thus ϕ(R⟨Y ⟩) is integral over R).
Using ϕ(g) = 0 gives ϕ(R⟨Y ⟩) =

∑
i<ℓ ϕ(R⟨Y ′⟩)yin. Since I ′ is a maximal ideal of K⟨Y ′⟩ we can assume

inductively that ϕ(R⟨Y ′⟩) ⊆ Ra, so ϕ(R⟨Y ⟩) ⊆
∑
i<ℓR

ayin. Now ϕ(g) = 0 means

yℓn + ϕ
(
c1(Y

′)
)
yℓ−1
n + · · ·+ ϕ

(
cℓ(Y

′)
)

= 0,

with ϕ
(
cj(Y

′)
)
∈ Ra for j = 1, . . . , ℓ. Hence yn ∈ Ra, which proves the claim. Therefore y ∈ (Ra)n, and by

Corollary 10.8 the restriction of ϕ to a map R⟨Y ⟩ → Ra is a morphism of A-rings. Thus for f(Y ) ∈ R⟨Y ⟩ we
have ϕ

(
f(Y )

)
= f(y), in particular, f(y) = 0 for all f ∈ I.

10.4 Immediate A-extensions

The study of immediate extensions of valued fields plays a key role in proving AKE-results via model theory

and valuation theory. We try to follow this pattern. By Lemma 10.1 and Corollary 10.25, the case of algebraic

immediate extensions is under control (at least in the equicharacteristic 0 case), so we are left with proving

that a pc-sequence of transcendental type “generates” an immediate extension. The problem is that the

valuation ring of such an extension should now be an A-ring, and thus closed under many more operations

than in the usual setting. In this section we show how to overcome this problem. This section uses only the

material of Section 10.3 that precedes Lemma 10.32.

Below we assume some familiarity with [29, Section 4]; when using a result from those lecture notes we shall

indicate the specific reference.

We continue with the previously set assumptions on A and R: A is noetherian with an ideal O(A) ̸= A such

that
⋂
e O(A)

e = {0} and A is O(A)-adically complete; R is a viable valuation A-ring.

We fix t ∈ R such that O(R) = tR and adopt the notations and terminology concerning R and its fraction

field K from Section 10.3, with the valuation v : K× → Γ on K such that R = {a ∈ K : va ⩾ 0}, so vt is the
least positive element of Γ. For any valued field extension L of K we let ΓL ⊇ Γ be the value group of L and

denote the valuation of L also by v, so that v : L× → ΓL extends v : K× → Γ.

By [29, Lemma 4.3] and the remark following its proof, any pc-sequence in K has a pseudolimit in some

elementary LA≼-extension of K; any such extension is an A-extension of K whose valuation ring inherits the

conditions we imposed on R.

Immediate A-extensions generated by a pseudocauchy sequence. In this subsection L

is an A-extension of K. Thus the valuation A-ring S of L extends the A-ring R and dominates R. We also

view any subfield F of L as a valued subfield of L, and thus as a valued field extension of K if K ⊆ F .
Let (aρ) be a pc-sequence in K of transcendental type over K, with all aρ ∈ R, and with pseudolimit

a ∈ L. Then a ∈ S, a is transcendental over K, and the valued subfield K(a) of L is an immediate extension

of K, by [29, Theorem 4.9]. But the valuation ring of K(a) does not contain R⟨a⟩ by Corollary 10.31, and so

is not A-closed in S.
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Is there a valued subfield Ka ⊇ K ∪ {a} of L that is an immediate extension of K and whose valuation

ring Ra is A-closed in S? Such Ra must contain R⟨a⟩, but has to be strictly larger, since R⟨a⟩ is not a

valuation ring, by Corollary 10.31.

To answer the question above affirmatively we proceed as follows. Take an index ρ0 such that for ρ > ρ0,

a = aρ + tρuρ, tρ ∈ K×, tρ ≺ 1, uρ ∈ K(a), uρ ≍ 1,

and v(tρ) is strictly increasing as a function of ρ > ρ0. Then for indices σ > ρ > ρ0 we have R[uρ] ⊆ R[uσ],
and thus

R⟨a⟩ ⊆ R⟨uρ⟩ ⊆ R⟨uσ⟩.

This yields an A-closed subring Ra :=
⋃
ρ>ρ0

R⟨uρ⟩ of S. Note that Ra does not change upon increasing ρ0,

and the next proposition shows more: as the notation suggests, Ra depends only on R and a, not on (aρ).

Proposition 10.40. The subring Ra of S has the following properties:

(i) the valued subfield Ka := Frac(Ra) of L is an immediate extension of K;

(ii) Ra is the least A-closed subring of S, with respect to inclusion, that contains R∪ {a} and is a valuation

ring dominated by S;

Proof. Let P ∈ K[Y ] \K where n = 1, so Y = Y1. Let I be the set of i in {1, . . . ,degP} with P(i)(Y ) ̸= 0.

Then I ̸= ∅ and for all ρ > ρ0,

P (a) = P (aρ) +
∑
i∈I

P(i)(aρ)(a− aρ)i = P (aρ) +
∑
i∈I

tiρP(i)(aρ)u
i
ρ.

The proof of [29, Proposition 4.7] gives i0 ∈ I such that, eventually,

for all i ∈ I \ {i0}, ti0ρ P(i0)(aρ) ≻ tiρP(i)(aρ),

P (a)− P (aρ) ∼ ti0ρ P(i0)(aρ),

and v
(
ti0ρ P(i0)(aρ)

)
= v

(
P (a)− P (aρ)

)
is eventually strictly increasing. Now (aρ) is of transcendental type

over K, so v
(
P (aρ)

)
is eventually constant, and thus P (aρ) ≻ P (a)− P (aρ), eventually. Thus eventually,

P (a) = P (aρ) ·
(
1 +

∑
i∈I

tiρP(i)(aρ)

P (aρ)
uiρ
)
∈ P (aρ) · (1 + tR⟨uρ⟩).

Now suppose Q(Y ) ∈ K[Y ] ̸=. Then likewise we have for j = 1, . . . ,degQ that eventually 0 ̸= Q(aρ) ≻
tjρQ(j)(aρ), so eventually

Q(a) = Q(aρ) ·
(
1 +

degQ∑
j=1

tjρQ(j)(aρ)

Q(aρ)
ujρ
)
∈ Q(aρ) · (1 + tR⟨uρ⟩).

Therefore, if P (a) ≼ Q(a), then eventually
P (aρ)
Q(aρ)

∈ R, and so eventually

P (a)

Q(a)
∈ P (aρ)

Q(aρ)
· (1 + tR⟨uρ⟩) ⊆ R · (1 + tR⟨uρ⟩) ⊆ R⟨uρ⟩.
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Thus the valuation ring of the valued subfield K(a) of L is contained in Ra. Now we use the reduction to

polynomials from Corollary 10.30(ii) to the effect that for g, h in R⟨Y ⟩ with h ̸= 0, if g(a) ≼ h(a), then

g(a)/h(a) ∈ Ra. Thus the valuation ring of the valued subfield Frac(R⟨a⟩) of L is contained in Ra, and it

also follows from the last display that Frac(R⟨a⟩) is an immediate extension of K.

Next, fix ρ > ρ0 and note that for σ > ρ we have

uρ = aσρ + tσρuσ, aσρ :=
aσ − aρ
tρ

∈ R, tσρ :=
tσ
tρ
,

and (aσρ)σ>ρ is a pc-sequence in K and of transcendental type over K such that aσρ ⇝
a−aρ
tρ

= uρ. Hence

the above arguments applied to uρ instead of a show that the valuation ring of Frac(R⟨uρ⟩) as a valued

subfield of L is contained in
⋃
σ>ρR⟨uσ⟩ = Ra, and is an immediate extension of K. Taking the union over

all ρ > ρ0 and using Ra ⊆ S yields that Ra is the valuation ring of the valued subfield Ka := Frac(Ra) of L,

and that Ka is an immediate extension of K. This proves (i) and also shows that S dominates Ra.

As to (ii), let R∗ be any A-closed subring of S containing R ∪ {a} such that R∗ is a a valuation ring

dominated by S. Then clearly uρ ∈ R∗ for all ρ > ρ0, and thus Ra ⊆ R∗.

We keep (aρ) for now, and show that Ka is essentially unique:

Corollary 10.41. Let L′ be an A-extension of K with valuation A-ring S′. Suppose aρ ⇝ a′ ∈ S′, thus

giving rise to Ra′ ⊆ Ka′ ⊆ L′. Then there is a unique isomorphism Ra → Ra′ of A-rings that is the identity

on R and sends a to a′. It extends to a valued field isomorphism Ka → Ka′ .

Proof. Using notations from the proof of Proposition 10.40 we have a′ = aρ + tρu
′
ρ with u′ρ ∈ K(a′), u′ρ ≍ 1

for ρ > ρ0. That same proof and Corollary 10.31 yields for all ρ > ρ0 a unique isomorphism R⟨uρ⟩ → R⟨u′ρ⟩
of A-rings that is the identity on R and sends uρ to u′ρ. Moreover, for σ > ρ > ρ0 we have

uρ = aσρ + tσρuσ, u′ρ = aσρ + tσρu
′
σ,

and so the above isomorphism R⟨uσ⟩ → R⟨u′σ⟩ extends the above isomorphism R⟨uρ⟩ → R⟨u′ρ⟩. Taking the

union over all ρ > ρ0 yields an isomorphism Ra → Ra′ of A-rings that is the identity on R and sends a

to a′. Any such isomorphism sends uρ to u′ρ for ρ > ρ0, and this gives uniqueness. Now Ra and Ra′ are

the valuation rings of Ka and Ka′ , so this isomorphism Ra → Ra′ extends to an isomorphism Ka → Ka′ of

valued fields.

Uniqueness of maximal immediate extensions over A. The results in this subsection about

maximal immediate A-extensions will not be used later, but are included for their intrinsic interest. So far

we did not restrict the characteristic of k or K, but now we also assume:

Either char(k) = 0 (the equicharacteristic 0 case), or K as a valued field is finitely ramified of mixed

characteristic.

This is a well-known sufficient condition for an ordinary valued field to have an essentially unique maximal

immediate extension; see [29, 4.29]. We now adapt this to our A-setting. A first consequence of the present

assumptions is that K has no proper algebraic immediate A-extension, by [29, Corollary 4.22]. Note that any

immediate A-extension of K inherits all the conditions we imposed so far on K. By a maximal immediate A-

extension of K we mean an immediate A-extension L of K such that L has no proper immediate A-extension.
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The previous subsection, the nonexistence of proper algebraic immediate A-extensions of K, and [29, Section

4] yield for an immediate A-extension L of K that the following are equivalent:

1. L is a maximal immediate A-extension of K,

2. L is maximal as a valued field,

3. L is spherically complete.

Corollary 10.42. K has a maximal immediate A-extension, and such an extension is unique up to LA≼-
isomorphism over K.

Proof. This goes along the same lines as the proof for ordinary valued fields: First, existence of a maximal

immediate A-extension of K follows by Zorn and Krull’s cardinality bound, like [29, Corollary 4.14]. As to

uniqueness, using Corollary 10.41 this goes as in the proof of [29, Corollary 4.29].

Using Corollary 10.41 we obtain in the same way:

Corollary 10.43. Any maximal immediate A-extension of K can be embedded, as an LA≼-structure, into any

|Γ|+-saturated A-extension of K.
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CHAPTER 11

A theory of affinoids

11.1 Affinoids

Here we define the affinoid subsets of the projective line over an algebraically closed valued field with a

nontrivial valuation, using suggestive multiplicative notation (as if we were dealing with an absolute value).

Next we show that an inequality |r(z)| ⩽ 1 given by a rational function r(Z) in one variable Z over such a

valued field defines such an affinoid. In the presence of a suitable analytic A-structure on the valuation ring

of a valued subfield we introduce in the next section for certain affinoids F the so-called affinoid algebra of

functions on F . These functions on F will turn out to be closely related to rational functions.

Our treatment of these notions here is self-contained, though we borrow much in this and the next section

from [37] where the valuation is assumed to be complete of rank 1. We avoid this assumption here, since it is

not of a first-order nature in the logical sense and we need the results later in a first-order setting.

The projective line. We begin with some generalities not involving the field being algebraically closed

or equipped with a valuation. Let K be a field. We define the projective line P = P(K) to be the set of

one-dimensional linear subspaces of the K-linear space K2, so its points are the lines [x0 : x1] := K(x0, x1)

with (x0, x1) ∈ K2 \{(0, 0)}. We identify λ ∈ K with the point [1 : λ] of P, so P = K∪{∞} where∞ := [0 : 1].

We make the group GL2(K) act on P by(
a b

c d

)
· [x0 : x1] := [cx1 + dx0 : ax1 + bx0],

or perhaps more readably: for z ∈ P = K ∪ {∞},(
a b

c d

)
· z :=

az + b

cz + d
.

with the usual conventions: for z =∞, the right hand side takes the value a
c (=∞ for c = 0), and for z ∈ K

it takes the value ∞ iff cz + d = 0). Instead of aZ+b
cZ+d we may consider any rational function r(Z) ∈ K(Z).

Then r defines a map

z 7→ r(z) : P→ P,

with the more general convention that for r = p/q and coprime p, q ∈ K[Z] with monic q we set r(∞) :=

leading coefficient of p for deg p = deg q, r(∞) = 0 for deg p < deg q, r(∞) = ∞ for deg p > deg q, and for

z ∈ K: r(z) =∞ iff q(z) = 0, and r(z) = p(z)/q(z) if q(z) ̸= 0.) (Recall in this connection that for z ∈ P we
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have a unique discrete valuation

vz : K(Z)× → Z,

trivial on K, such that vz(Z − z) = 1 if z ∈ K, and v∞(Z−1) = 1, and that the above convention amounts to

setting r(z) =∞ iff vz(r(Z)) < 0; identifying K in the usual way with the residue field of vz we note that if

vz(r(Z)) ⩾ 0, then r(z) ∈ K is the image of r(Z) in this residue field.)

The upper triangular matrices in GL2(K) make up a subgroup of GL2(K), the affine subgroup of GL2(K).

This subgroup consist exactly of the g ∈ GL2(K) that fix the point ∞ ∈ P (with respect to the action of

GL2(K) on P) and the resulting action of this subgroup on K is doubly transitive: for all x1 ̸= x2 and y1 ̸= y2

in K there is a g in this subgroup such that g · x1 = y1 and g · x2 = y2. It is also easy to check that for

any x ∈ P \ {0, 1} there is a g ∈ GL2(K) with g · 0 = 0, g · 1 = 1, and g · ∞ = x. It follows easily that the

action of GL2(K) on P is triply transitive: for any three-element subsets {x1, x2, x3}, {y1, y2, y3} of P there

is g ∈ GL2(K) such that g · xi = yi for i = 1, 2, 3.

Under the action of GL2(K) on P, the normal subgroup K×I of GL2(K) with I the identity of GL2(K)

acts trivially, inducing an action of GL2(K)/K×I on P.

The valued field setting. Here K is a field equipped with a valuation. We use multiplicative notation,

so the valuation is a surjective function z 7→ |z| : K → |K| (like an absolute value), where |K| = |K×| ∪ {0}
is a totally ordered set with least element 0 /∈ |K×| and |K×| with the induced ordering is an ordered

(multiplicative) commutative group, such that |a| = 0 iff a = 0, |a+ b| ⩽ max(|a|, |b|), and |ab| = |a| · |b| for
a, b ∈ K (where by convention 0 · ρ = ρ · 0 := 0 ∈ |K| for ρ ∈ |K|.) We extend this valuation to P by adjoining

to |K| an element ∞ /∈ |K|, extending the total ordering of |K| to |K|∞ = |K| ∪ {∞} so that ρ <∞ for all

ρ ∈ |K|; we set |∞| :=∞ where the first ∞ is in P and the second ∞ is in |K|∞.

Disks. An open disk (in P) is a set

D = {z ∈ P : |z − a| < ρ}

or a set

D = {z ∈ P : |z − a| > ρ}

with a ∈ K, ρ ∈ |K×|. Open disks of the first kind are subsets of K; those of the second kind are subsets of

P containing the point ∞.

A closed disk (in P) is a set

D = {z ∈ P : |z − a| ⩽ ρ}

or a set

D = {z ∈ P : |z − a| ⩾ ρ}

with a ∈ K, ρ ∈ |K×|. Closed disks of the first kind are subsets of K and those of the second kind are subsets

of P containing the point ∞. By a disk we mean an open disk or a closed disk. A disk contained in K is also

called a bounded disk , and a disk containing the point ∞ ∈ P is called an unbounded disk. The closed disks

are exactly the complements in P of the open disks. If the valuation is trivial (that is, |K×| = {1}), then the

open disks are the one-element subsets of P.
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Note that for a, b ∈ K and ρ ∈ |K×| we have:

|b− a| < ρ ⇒ {z ∈ P : |z − a| < ρ} = {z ∈ P : |z − b| < ρ},

|b− a| < ρ ⇒ {z ∈ P : |z − a| ⩾ ρ} = {z ∈ P : |z − b| ⩾ ρ},

|b− a| ⩽ ρ ⇒ {z ∈ P : |z − a| ⩽ ρ} = {z ∈ P : |z − b| ⩽ ρ},

|b− a| ⩽ ρ ⇒ {z ∈ P : |z − a| > ρ} = {z ∈ P : |z − b| > ρ}.

Thus for bounded disks D,E, either D ∩ E = ∅, or D ⊆ E, or E ⊆ D. Note also that for a bounded open

disk (respectively, bounded closed disk) D there is a unique ρ ∈ |K×| such that for some a ∈ K we have

D = {z ∈ K : |z− a| < ρ} (respectively, D = {z ∈ K : |z− a| ⩽ ρ}); set radius(D) := ρ for this particular ρ.

Lemma 11.1. Let g ∈ GL2(K) and let D be an open (respectively, closed) disk. Then gD is also an open

(respectively, closed) disk. The resulting action of GL2(K) on the set of open disks (respectively, closed disks)

is transitive.

Proof. It suffices to prove the claims about g for g a translation z 7→ z + a : P → P (with a ∈ K), for g a

dilation z 7→ az (with a ∈ K×), and for g the inversion z 7→ 1/z : P → P. The case of translations and

dilations is clear, and each of the resulting actions of the affine subgroup of GL2(K) on the set of bounded

open disks, the set of bounded closed disks, the set of unbounded open disks, and the set of unbounded closed

disks is transitive. Suppose next that g is the above inversion. If D is a bounded open disk with 0 ∈ D, then

D = {z ∈ K : |z| < ρ} with ρ ∈ |K×|, so gD = {z ∈ P : |z| > ρ−1} is an unbounded open disk with 0 /∈ gD.

Likewise, if D is a bounded closed disk with 0 ∈ D, then gD is an unbounded closed disk with 0 /∈ gD, and if

D is an unbounded open (respectively, closed) disk with 0 /∈ D, then gD is a bounded open (respectively,

closed) disk with 0 ∈ gD. Next, if D is a bounded open disk with 0 /∈ D, then D = {z ∈ K : |z − a| < ρ}
with a ∈ K, |a| ⩾ ρ ∈ |K×|, so gD = {y ∈ K : |y − a−1| < |a|−2ρ} is also a bounded open disk with 0 /∈ gD.

Likewise, if D is a bounded closed disk with 0 /∈ D, then gD is also a bounded closed disk with 0 /∈ gD.

Taking complements it follows that if D is an unbounded open (respectively, closed) disk with 0 ∈ D, then so

is gD.

Using this lemma and the corresponding result for bounded disks we conclude that for any disks D,E with

D ∪ E ̸= P, either D ∩ E = ∅, or D ⊆ E, or E ⊆ D.

Affinoids. In the rest of this chapter we fix an algebraically closed field Ka equipped with a nontrivial

valuation. We use multiplicative notation as before, and P and the various notions of disk are now with

respect to the valued field Ka.

A connected affinoid is a nonempty set F = P\(E1∪· · ·∪Em) where E1, . . . , Em are open disks. Such F is

said to be bounded if∞ /∈ F . Suppose F is a bounded connected affinoid. Then F = D \ (H1∪ · · ·∪Hm) with

D a bounded closed disk and H1, . . . ,Hm disjoint open disks contained in D, and this uniquely determines

D (the ambient disk of F ) and {H1, . . . ,Hm} (the set of holes of F ). Conversely, for any bounded closed

disk D and disjoint open disks H1, . . . ,Hm ⊆ D, the set F = D \ (H1 ∪ · · · ∪Hm) is a connected affinoid.

Closed disks are connected affinoids.

Using Lemma 11.1 we easily obtain: for any connected affinoid F there are disjoint open disks E1, . . . , Em

such that F = P \ (E1 ∪ · · · ∪ Em), and this determines uniquely the set {E1, . . . , Em}. It is also easy to see

that a connected affinoid is an infinite subset of P. Here is another useful fact:

118



Lemma 11.2. Let F1 and F2 be connected affinoids such that F1 ∩ F2 ̸= ∅. Then F1 ∪ F2 and F1 ∩ F2 are

connected affinoids.

An affinoid is a finite union of connected affinoids. Note that if F1 and F2 are affinoids, then so are F1 ∩ F2

and F1 ∪ F2. A component of an affinoid F is a maximal (under inclusion) connected affinoid contained in F .

Lemma 11.3. Let F be an affinoid. Then the components of F are the elements of a finite partition of F .

(The empty subset of P is an affinoid and has no components.)

Proof. We have F = F1 ∪ · · · ∪ Fn where the Fi are connected affinoids. Take the maximal subsets I of

{1, . . . , n} for which FI :=
⋃
i∈I Fi is a connected affinoid. Using Lemma 11.2 it is easy to check that the

FI for these maximal I are exactly the components of F , and that any two different components of F are

disjoint.

The affinoids associated to a rational function. These affinoids are the subsets F of P in the

following proposition:

Theorem 11.4. Let r(Z) ∈ Ka(Z)×, and ρ ∈ |Ka,×|. Then

F := {z ∈ P : |r(z)| ⩽ ρ}

is an affinoid. (This includes the possibility that F = ∅.)

Proof. Multiplying r with an element of Ka,× we arrange that

r(Z) =

m∏
i=1

(Z − ai)ei

with distinct a1, . . . , am ∈ Ka and e1, . . . , em ∈ Z̸=. The proposition holds clearly for m = 0 and m = 1, so

assume m ⩾ 2. Let i, j ∈ {1, . . . ,m} below.

Special Case: |ai − aj | = 1 for all i ̸= j.

SUBCASE (a): ρ ⩾ 1. Set

F0 := {z ∈ P : |r(z)| ⩽ ρ, |z − ai| ⩾ 1 for all i}.

Note that for z ∈ P, if |z − ai| ⩾ 1 for all i, then |z − ai| = |z − a1| for all i. Thus for e := e1 + · · ·+ em we

have F0 = {z ∈ P : |(z − a1)e| ⩽ ρ, |z − ai| ⩾ 1 for all i}. There are z ∈ Ka with |z − ai| = 1 for all i, so

F0 ̸= ∅, and thus F0 is a connected affinoid. Moreover, if z ∈ P and |z − ai| < 1, then |z − aj | = 1 for all

j ̸= i, so |r(z)| = |(z − ai)ei |. Hence

Fi := {z ∈ P : |r(z)| ⩽ ρ and |z − ai| < 1} = {z ∈ P : |(z − ai)ei | ⩽ ρ, |z − ai| < 1},

Considering the various possible signs of e and ei we see that the set F0 ∪ Fi is a connected affinoid. Hence

F = F0 ∪ F1 ∪ · · · ∪ Fm is a connected affinoid.

SUBCASE (b): ρ < 1. As in Subcase (a) we see that

F0 := {z ∈ P : |r(z)| ⩽ ρ, |z − ai| ⩾ 1 for all i}
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is a connected affinoid or empty, and that

Fi := {z ∈ P : |r(z)| ⩽ ρ and |z − ai| < 1}

is a connected affinoid or empty. It follows that F is an affinoid.

General Case. We arrange µ := maxi ̸=j |ai − aj | = maxj ̸=1 |a1 − aj | and set

B := {z ∈ Ka : |z − a1| < µ}.

SUBCASE (c): |ai − aj | = µ for all i ̸= j. This subcase reduces to the Special Case considered by a

change of variables. This includes the case m = 2. Assume we are not in Subcase (c). Then m ⩾ 3, and we

can arrange:

SUBCASE (d): s ∈ {2, . . . ,m − 1} is such that a1, . . . , as ∈ B and as+1, . . . , am are outside B. Take

d ∈ (Ka)× with |a1 − ai| < |d| < µ for i = 1, . . . , s and set

D := {z ∈ P : |z − a1| ⩽ |d|}, F1 := {z ∈ P : |r(z)| ⩽ ρ, |z − a1| ⩽ |d|}.

Then we have

F1 = {z ∈ P : |(z − a1)e1 · · · (z − as)es | ⩽
ρ

µes+1+···+em
} ∩D.

We also set

E := {z ∈ P : |z − a1| ⩾ |d|}, F2 := {z ∈ P : |r(z)| ⩽ ρ, |z − a1| ⩾ |d|}.

Then F = F1 ∪ F2, and we have

F2 := {z ∈ P : |(z − a1)e1+···+es · (z − as+1)
es+1 · · · (z − am)em | ⩽ ρ} ∩ E.

One can assume inductively that F1 and F2 are affinoids. Thus F is an affinoid.

K-affinoids. The proof of Theorem 11.4 has some useful consequences that involve a subfield K of Ka.

By a connected K-affinoid we mean a nonempty set

P \ (E1 ∪ · · · ∪ Em)

where each Ei is an open disk {z ∈ P : |z − a| < ρ} or {z ∈ P : |z − a| > ρ} with a ∈ K and ρ ∈ |K×|. Of

course, connected K-affinoids are connected affinoids. If F1, F2 are connected K-affinoids with F1 ∩ F2 ̸= ∅,
then so are F1 ∪ F2 and F1 ∩ F2. For a, b1, . . . , bm ∈ K and ρ, ρ1, . . . , ρm ∈ |K×| the set

{z ∈ P : |z − a| ⩽ ρ, |z − b1| ⩾ ρ1, . . . , |z − bm| ⩾ ρm}

is empty or a bounded connected K-affinoid; every bounded connected K-affinoid has this form.

Corollary 11.5. Let K be an algebraically closed subfield of Ka (possibly with |K×| = {1}), and suppose

r(Z) ∈ K(Z)×, and ρ ∈ |K|×. Then the affinoid

F := {z ∈ P : |r(z)| ⩽ ρ}
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is a finite union of connected K-affinoids.

Proof. We follow the proof of Proposition 11.4. Note that if m ⩾ 2 and |K×| = {1}, then we are in the

Special Case with ρ = 1, so in Subcase (a), and hence F0 and F0 ∪ Fi for i ∈ {1, . . . ,m} are connected

K-affinoids.

The following variant will also be useful:

Corollary 11.6. Let F be a connected affinoid and suppose the rational functions r1, r2 ∈ Ka(Z) have

no pole in F . Then {z ∈ F : |r1(z)| ⩽ |r2(z)|} is a finite union of connected affinoids and singletons, all

contained in F .

If in addition K is an algebraically closed subfield of Ka and r1, r2 ∈ K(Z), then {z ∈ F : |r1(z)| ⩽ |r2(z)|}
is a finite union of connected K-affinoids and singletons {z} with z ∈ K, all contained in F .

Proof. The case r2 = 0 is trivial, so assume r2 ̸= 0 and set r(Z) := r1(Z)/r2(Z). One verifies easily that then

for z ∈ F we have

|r(z)| ⩽ 1 =⇒ |r1(z)| ⩽ |r2(z)|,

|r1(z)| ⩽ |r2(z)| =⇒ |r(z)| ⩽ 1 or vz(r1) ⩾ vz(r2) > 0.

It remains to note that {z ∈ F : vz(r2) > 0} = {z ∈ F : r2(z) = 0} is finite.

As before, K is a valued subfield of Ka. It can happen that a connected K-affinoid has empty intersection

with K even when the valuation is nontrivial on K. As an example, let p be a prime number, take the p-adic

field K = Qp with its usual p-adic absolute value, take an algebraically closed valued field extension Ka of K,

and take F = D − (H1 ∪ · · · ∪Hp) where

D := {z ∈ Ka : |z| ⩽ 1}, Hi := {z ∈ Ka : |z − i| ⩽ p−1} = pD + i (i = 1, . . . , p).

Then D ∩K = Zp, Hi ∩K = pZp + i for i = 1, . . . , p, so F ∩Qp = ∅, although F is a (bounded) connected

K-affinoid. On the other hand:

Lemma 11.7. Let F be a bounded connected K-affinoid with m holes, and suppose the valuation on

K is nontrivial and the residue field of K has more than m elements. Then F contains an entire disk

{z ∈ Ka : |z − a| < ρ} with a in K and ρ ∈ |K×|, so F ∩K is infinite.

Proof. By translation and dilation we reduce to the case F = D − (H1 ∪ · · · ∪ Hm) where D = {z ∈
Ka : |z| ⩽ 1} is the ambient disk of F and H1, . . . ,Hm are the holes of F . For i = 1, . . . ,m we have

Hi ⊆ {z ∈ Ka : |z − ai| < 1} with ai ∈ D ∩K. Taking a ∈ K with |a| ⩽ 1 and |a− ai| = 1 for i = 1, . . . ,m

we have {z ∈ Ka : |z − a| < 1} ⊆ F .

R-affinoids. We continue with the subfield K of Ka and let R := K ∩Ra be the valuation ring of K as a

valued subfield of Ka. Define a closed (respectively open) R-disk to be a subset of Ka of the form

{z ∈ Ka : |z − c| ⩽ |π|}, respectively, {z ∈ Ka : |z − c| < |π|},

where c, π ∈ R, π ̸= 0. So closed (respectively, open) R-disks are closed (respectively, open) disks in the sense

of the ambient algebraically closed valued field Ka and are subsets of Ra. Likewise, a connected R-affinoid is
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a set D \ (H1 ∪ · · · ∪Hm) where D is a closed R-disk and H1, . . . ,Hm are disjoint open R-disks contained

in D. Thus a connected R-affinoid is a connected affinoid and a subset of Ra. Moreover, for a connected

affinoid F we have:

F is a connected R-affinoid ⇔ F ⊆ Ra and F is a connected K-affinoid.

If F1 and F2 are connected R-affinoids and F1 ∩ F2 ̸= ∅, then F1 ∪ F2 and F1 ∩ F2 are also connected

R-affinoids. The next result will not be used, but may give the reader some feeling for the nature of certain

kinds of connected R-affinoids.

Corollary 11.8. Suppose F is a connected R-affinoid, z ∈ F , and z /∈ k. Then there are M ∈ N and

a1, . . . , aM ∈ R such that

F ⊇ {u ∈ Ra : u ̸= a1, . . . , aM}.

Proof. Let D be the ambient disk of F . Since D ⊆ Ra we have

D = {y ∈ Ka : |y − c| ⩽ |π|} where c, π ∈ R, π ̸= 0.

Then z ̸= c, so |z − c| = 1, and thus |π| = 1. Hence D = Ra. It remains to note that each hole of F is

contained, for some a ∈ R, in the open disk

{y ∈ Ka : |y − a| < 1} = {y ∈ Ra : y = a}

11.2 Affinoid algebras

In this section we introduce here affinoid algebras on suitable affinoids, inspired by [37]. We are forced,

however, to replace the simple analytic definitions and proofs in [37] by more elaborate constructions and

arguments that depend heavily on Section 10.3. This is because the way we develop our AKE-theory for

suitable valuation A-rings in Sections 12.1 and 12.2 requires a first-order setting.

Here we return to the assumptions of Sections 10.3: A is noetherian with an ideal O(A) ̸= A such that⋂
e O(A)

e = {0} and A is O(A)-adically complete; R is a viable valuation A-ring.

We fix t ∈ R such that O(R) = tR and adopt the notations and terminology concerning R and its fraction

field K from Section 10.3, with the valuation v : K× → Γ on K such that R = {a ∈ K : va ⩾ 0}, so vt is
the least positive element of Γ. We shall also need the extension Ã = A⟨ω⟩[[tp]] of A at a few places in this

section. Recall Ka is an algebraically closed A-extension of K whose valuation A-ring is denoted by Ra.

In the rest of this section F is a connected R-affinoid. Then we have n ⩾ 1 and c1, . . . , cn, π1, . . . , πn ∈ R
with π1, . . . , πn ̸= 0 such that

F = {z ∈ Ra : |z − c1| ⩽ |π1|, |z − c2| ⩾ |π2|, . . . , |z − cn| ⩾ |πn|}

where the open R-disks {z ∈ Ra : |z − ci| < |πi|}, for i = 2, . . . , n, are pairwise disjoint and contained in

the closed R-disk {z ∈ Ra : |z − c1| ⩽ |π1|}. We express this by: F is given by (c1, . . . , cn;π1, . . . , πn); we

assume this till further notice. Define ψ : F → (Ra)n by

ψ(z) :=
(z − c1

π1
,

π2
z − c2

, . . . ,
πn

z − cn
)
.
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For distinct i, j ∈ {2, . . . , n}, set sij := πi/(ci − cj), and for j = 2, . . . , n, set s1j := (cj − c1)/π1, and

sj1 := πj/π1. So |sij | ⩽ 1 for all distinct i, j ∈ {1, . . . , n}. We also introduce the polynomials eij ∈ R[Y ] for

1 ⩽ i < j ⩽ n:

e1j(Y ) := Y1Yj − s1jYj − sj1 (2 ⩽ j ⩽ n)

eij(Y ) := YiYj + sjiYi + sijYj (2 ⩽ i < j ⩽ n).

Let I(F ) be the ideal of K⟨Y ⟩ generated by the eij with 1 ⩽ i < j ⩽ n. Then

ψ(F ) = Z
(
I(F )

)
:= {y ∈ (Ra)n : f(y) = 0 for all f ∈ I(F )}.

For the inclusion from right to left, let y = (y1, . . . , yn) ∈ Z
(
I(F )

)
. Then y1 = (z − c1)/π1 with z ∈

Ra, |z − c1| ⩽ |π1|. For j = 2, . . . , n, e1j(y) = 0 gives z ̸= cj , yj = πj/(z − cj), so yj ∈ Ra gives z ∈ F and

thus y = ψ(z) ∈ ψ(F ).

Lemma 11.9. Let g ∈ K⟨Y ⟩ in (i), and n ⩾ 2, g ∈ K⟨Y2, . . . , Yn⟩ in (ii). Then:

(i) g ≡ g1 + · · ·+ gn mod I(F ) for some gj ∈ K⟨Yj⟩, j = 1, . . . , n;

(ii) g ≡ g2 + · · · + gn mod I1 for some gj ∈ K⟨Yj⟩, j = 2, . . . , n, where I1 is the ideal of K⟨Y2, . . . , Yn⟩
generated by the eij with 2 ⩽ i < j ⩽ n.

Proof. For (i) we use induction on n. The case n = 1 is obvious, so assume n ⩾ 2. Let I ′ be the ideal of

K⟨Y ′⟩ generated by the eij with 1 ⩽ i < j ⩽ n− 1. Assume inductively that each g′ ∈ K⟨Y ′⟩ is congruent
modulo I ′ to a sum g′1 + · · ·+ g′n−1 with g′i = g′i(Yi) ∈ K⟨Yi⟩. Then (i) follows from what we prove next:

Claim: g ≡ h1 + h2 mod I(F ) for some h1 ∈ K⟨Y ′⟩ and h2 ∈ K⟨Yn⟩.

Multiplying g by an element of K× we arrange g ∈ R⟨Y ⟩, so g = G(x, Y ) with G =
∑
ν aν(X)Y ν ∈ A⟨X,Y ⟩

and x ∈ Rm (and aν(X)→ 0 as |ν| → ∞). Let

S := (S1n, Sn1, . . . , Sin, Sni, . . . , Sn−1,n, Sn,n−1)

be a fresh tuple of indeterminates, and in the polynomial ring A[S, Y ], set

E1n := Y1Yn − Sn1 − S1nYn

Ein := YiYn + SniYi + SinYn (2 ⩽ i ⩽ n− 1).

Working modulo the ideal (E1n, . . . , En−1,n) in A[S, Y ] an easy induction on |ν| gives for every ν ∈ Nn

polynomials p(ν)(S, Y ′) ∈ A[S, Y ′] ⊆ A[S, Y ] and q(ν)(S, Yn) in A[S, Yn] ⊆ A[S, Y ] such that

Y ν ≡ p(ν) + q(ν) mod (E1n, . . . , En−1,n), degY ′ p(ν),degYn
q(ν) ⩽ |ν|, so

Y ν = p(ν) + q(ν) +

n−1∑
i=1

r
(ν)
i Ein, r1, . . . , rn−1 ∈ A[S, Y ].
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Now we combine these equalities in A⟨X,S, Y ⟩ and set

H1(X,S, Y
′) :=

∑
ν

aν(X)p(ν)(S, Y ′) ∈ A⟨X,S, Y ′⟩ ⊆ A⟨X,S, Y ⟩

H2(X,S, Yn) :=
∑
ν

aν(X)q(ν)(S, Yn) ∈ A⟨X,S, Yn⟩ ⊆ A⟨X,S, Y ⟩

Ri(X,S, Y ) :=
∑
ν

aν(X)r
(ν)
i (S, Y ) ∈ A⟨X,S, Y ⟩ (i = 1, . . . , n− 1), so

∑
ν

aν(X)Y ν = H1(X,S, Y
′) +H2(X,S, Yn) +

n−1∑
i=1

Ri(X,S, Y )Ein.

For s := (s1n, sn1, . . . , sin, sni, . . . , sn−1,n, sn,n−1) we have ein = Ein(s, Y ), so

g(Y ) = G(x, Y ) = H1(x, s, Y
′) +H2(x, s, Yn) + E(x, s, Y )

with E(x, s, Y ) ∈ (e1n, . . . , en−1,n)R⟨Y ⟩ ⊆ I(F ).

The proof of (ii) is similar, and we only indicate the beginning. The case n = 2 is trivial, so assume n ⩾ 3.

Let I ′1 be the ideal of K⟨Y2, . . . , Yn−1⟩ generated by the eij with 2 ⩽ i < j ⩽ n− 1. Assume inductively that

each g′ ∈ K⟨Y2, . . . , Yn−1⟩ is congruent modulo I ′1 to a sum g′2 + · · · + g′n−1 with g′i = g′i(Yi) ∈ K⟨Yi⟩ for
i = 2, . . . , n− 1. Then (ii) follows from

Claim: g ≡ h1 + h2 mod I1 for some h1 ∈ K⟨Y2, . . . , Yn−1⟩ and h2 ∈ K⟨Yn⟩.

The proof of this claim is just like that of the claim in the proof of (i).

For i > j in {2, . . . , n} we set eij := eji.

Lemma 11.10. Let g ∈ K⟨Y ⟩. Then Pg ≡ EQ mod I(F ) for some unit E of R⟨Y ⟩, polynomial Q ∈ K[Yk]

with k ∈ {1, . . . , n}, and polynomial P ∈ R[Y ] which is a product of finitely many factors, each of the form

Yj + sji (2 ⩽ i, j ⩽ n, i ̸= j) or of the form Y1 − s1i (2 ⩽ i ⩽ n), or of the form Yj (2 ⩽ j ⩽ n).

Proof. If g ∈ I(F ), this holds with P = E = 1 and Q = 0, so assume g /∈ I(F ) below. Lemma 11.9(i) gives

gi ∈ K⟨Yi⟩ for i = 1, . . . , n such that g ≡ g1 + · · · + gn mod I(F ), and we can arrange g = g1 + · · · + gn.

Then Proposition 10.38 gives i ∈ {1, . . . , n}, ℓ ∈ N, c ∈ K×, a unit E of R⟨Y ⟩, and c1, . . . , cℓ ∈ R⟨Y ∗⟩ where
Y ∗ := (Y1, . . . , Yi−1, Yi+1, . . . , Yn), such that

g = cE ·
(
Y ℓi + c1Y

ℓ−1
i + · · ·+ cℓ

)
.

For n = 1 the desired property holds with P = 1. Below we assume n ⩾ 2. Pick j ∈ {1, . . . , n}, j ̸= i.

Suppose i, j > 1 for now. Since eij − sijYj = Yi(sji + Yj) we can multiply both sides in the last display by

(sji + Yj)
ℓ to obtain

g(sji + Yj)
ℓ = cE ·

(
(eij − sijYj)ℓ + c1(eij − sijYj)ℓ−1(sji + Yj) + · · ·+ cℓ(sji + Yj)

ℓ
)
.

We have eij ∈ I(F ), so for

h(Y ∗) := (−sijYj)ℓ + c1(−sijYj)ℓ−1(sji + Yj) + · · ·+ cl(sji + Yj)
ℓ ∈ K⟨Y ∗⟩
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we obtain

(sji + Yj)
ℓ · g ≡ cEh mod I(F ).

For j = 1 we use the identity e1i + si1 = Yi(Y1 − s1i) to introduce instead of a factor (sji + Yj)
ℓ a factor

(Y1 − s1i)ℓ and obtain a similar congruence for some h ∈ K⟨Y ∗⟩; if i = 1, we use Y1Yj = e1j + sj1 + s1jYj to

introduce likewise a factor Y ℓj .

We can assume inductively that the lemma holds for h ∈ K⟨Y ∗⟩ instead of g ∈ K⟨Y ⟩, with the ideal

of K⟨Y ∗⟩ generated by the ekl (1 ⩽ k < l ⩽ n, k, l ̸= i) instead of I(F ). (In case i = 1 this involves an

argument as above using Lemma 11.9(ii) instead of Lemma 11.9(i).) This yields the desired conclusion.

Let R(F ) be the K-algebra of Ka-valued functions on F . Then

ψ∗ : K⟨Y ⟩ → R(F ), ψ∗(g)(z) := g
(
ψ(z)

)
for g ∈ K⟨Y ⟩, z ∈ F,

is a K-algebra morphism, and we set O(F ) := ψ∗(K⟨Y ⟩), a K-subalgebra of R(F ). It is clear that

I(F ) ⊆ ker(ψ∗), and in fact we have equality here: Corollary 11.19. Note also that for f ∈ O(F ) and

z ∈ F ∩R we have f(z) ∈ K. First we show how elements of O(F ) relate to rational functions:

Corollary 11.11. Given f ∈ O(F ), there is a unit E ∈ R⟨Y ⟩ and a rational function r(Z) ∈ K(Z) without

poles in F such that f(z) = ψ∗(E)(z) · r(z) for all z ∈ F . For such f , E, r, we have D(Y ) ∈ R[Y ] with

E −D ∈ O(A)R⟨Y ⟩, and then

(i) |f(z)| = |r(z)| for all z ∈ F ;

(ii) f(z) ∼ D
(
ψ(z)

)
· r(z) for all z ∈ F with f(z) ̸= 0;

(iii) there exists ρ(Z) ∈ K(Z) without poles in F such that for all z ∈ F with f(z) ̸= 0 we have f(z) ∼ ρ(z).

Proof. Let g ∈ K⟨Y ⟩ and f = ψ∗(g). Let E ∈ R⟨Y ⟩, Q ∈ K[Yk], and P ∈ R[Y ] be as in Lemma 11.10. Then

for z ∈ F we have

ψ∗(Yj + sji)(z) =
πj(z − ci)

(cj − ci)(z − cj)
(2 ⩽ i, j ⩽ n, i ̸= j),

ψ∗(Y1 − s1i)(z) =
z − ci
π1

(2 ⩽ i ⩽ n),

ψ∗(Yj)(z) =
πj

z − cj
(2 ⩽ j ⩽ n).

Hence ψ∗(P )(z) ̸= 0 for all z ∈ F . Take r(Z) ∈ K(Z) such that for all z ∈ F we have r(z) =

ψ∗(Q)(z)/ψ∗(P )(z). Then r(Z) has no poles in F and f(z) = ψ∗(E)(z) · r(z) for all z ∈ F . The rest

is routine.

We used (c1, . . . , cn;π1, . . . , πn) to define O(F ) as a subring of R(F ). Fortunately:

Lemma 11.12. The ring O(F ) does not depend on (c1, . . . , cn;π1, . . . , πn).

Proof. Suppose F is also given by (c′1, . . . , c
′
n;π

′
1, . . . , π

′
n). We first consider the case c1 = c′1, π1 = π′

1 and

σ is a permutation of {2, . . . , n} such that c′σ(j) = cj and π′
σ(j) = πj for j = 2, . . . , n. Let ψ′ : F → (Ra)n

be the map associated to (c′1, . . . , c
′
n;π

′
1, . . . , π

′
n). Then ψ(z) = σ(ψ′(z)), where for y ∈ (Ra)n we set
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σ(y) =
(
y1, yσ(2), . . . , yσ(n)

)
. Thus O(F ) as defined via ψ equals O(F ) as defined via ψ′. Using this special

case we may assume for the general case that for j = 1, . . . , n the R-disks

{z ∈ Ka : |z − cj | < |πj |} and {z ∈ Ka : |z − c′j | < |π′
j |}

are equal. Let f ∈ O(F ), G(X,Y ) =
∑
aν(X)Y ν ∈ A⟨X,Y ⟩, and let x ∈ Rm be such that f = ψ∗(g), where

g(Y ) = G(x, Y ) ∈ R⟨Y ⟩. Set

v1 :=
π′
1

π1
, u1 :=

c1 − c′1
π′
1

, vj :=
πj
π′
j

, uj :=
cj − c′j
tπ′
j

for j = 2, . . . , n,

so u1, . . . , un, v1, . . . , vn ∈ R. We introduce distinct indeterminates

U1, . . . , Un, V1, . . . , Vn,W1, . . . ,Wn

different also from X1, X2, . . . , Xm. Now

ψ∗(Y1)(z) =
z − c1
π1

= v1 ·
(z − c′1

π′
1

− u1
)

for z ∈ F,

and for j = 2, . . . , n and z ∈ F ,

ψ∗(Yj)(z) =
πj

z − cj
=

πj
(z − c′j)

1(
1− (cj − c′j)/(z − c′j)

)
= vj ·

(
π′
j/(z − c′j)

)
· 1

1− tuj
(
π′
j/(z − c′j)

) = Q
(
uj , vj , π

′
j/(z − c′j)

)
whereQ(Uj , Vj ,Wj) := Vj

∑∞
k=0 t

k
pU

k
jW

k+1
j ∈ Ã⟨Uj , Vj ,Wj⟩. (Here we use the identity (1−tpUjWj)Q(Uj , Vj ,Wj) =

VjWj .) Let ψ′∗ : K⟨W ⟩ → R(F ) be given by ψ′∗(h)(z) = h
(
ψ′(z)

)
for z ∈ F , in particular, for z ∈ F ,

ψ′∗(W1)(z) =
z − c′j
π′
1

, ψ′∗(Wj)(z) =
π′
j

z − c′j
for j = 2, . . . , n.

With U := (U1, . . . , Un) and likewise with V,W , define H ∈ Ã⟨X,U, V,W ⟩ by

H := G
(
X,V1(W1 − U1), V2

∞∑
k=0

(tpU2)
kW k+1

2 , . . . , Vn

∞∑
k=0

(tpUn)
kW k+1

n

)
.

Set u := (u1, . . . , un) ∈ Rn, v := (v1, . . . , vn) ∈ Rn and h(W ) := H(x, u, v,W ) in R⟨W ⟩. Then for z ∈ F we

have h
(
ψ′(z)

)
= g
(
ψ(z)

)
, and so ψ′∗(h) = f .

Example. The connected R-affinoid F := {z ∈ Ka : |z| ⩽ 1} = Ra is given by (0; 1). The corresponding

map ψ : F → Ra is the identity map, so O(F ) = K⟨Z⟩, where Z is a single indeterminate and where we

identify each g ∈ K⟨Z⟩ with the function z 7→ g(z) : F → Ka in O(F ).

Lemma 11.13. Let F ′ be a connected R-affinoid with F ′ ⊆ F . Then

f ∈ O(F ) =⇒ f |F ′ ∈ O(F ′).
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Proof. We can reduce to two cases: (1), where F ′ is obtained from F by adding a hole, possibly swallowing

some holes of F , and (2), where we shrink the ambient disk {z ∈ Ra : |z − c1| ⩽ |π1|}, possibly also

eliminating some holes of F .

More precisely, in the first case F ′ is given for a certain r ∈ {1, . . . , n} by

(c1, c, cr+1, . . . , cn; π1, π, πr+1, . . . , πn)

where c, π ∈ R, π ̸= 0, and {z ∈ Ra : |z − c| < |π|} includes {z ∈ Ra : |z − cj | < |πj |} for j = 2, . . . , r and is

disjoint from {z ∈ Ra : |z − cj | < |πj |} for j = r + 1, . . . , n. Let f ∈ O(F ) with f = ψ∗(g), g ∈ R⟨Y ⟩ and
take G(X,Y ) ∈ A⟨X,Y ⟩ such that g(Y ) = G(x, Y ), x ∈ Rm. We show that then f |F ′ ∈ O(F ′). Let

U2, . . . , Ur, V2, . . . , Vr,W1, . . . ,Wn−r+2

be distinct indeterminates also different from X1, . . . , Xm and set U := (U2, . . . , Ur) and likewise with V

and W . Let ψ′ : F ′ → (Ra)n−r+2 be the map associated to (c1, c, cr+1, . . . , cn; π1, π, πr+1, . . . , πn). Set

uj := (cj − c)/tπ and vj := πj/π for j = 2, . . . , r, so u := (u2, . . . , ur) ∈ Rr−1 and v := (v2, . . . , vr) ∈ Rr−1.

Let H ∈ Ã⟨X,U, V,W ⟩ be

G
(
X,W1, V2

∞∑
k=0

(tpU2)
kW k+1

2 , . . . , Vr

∞∑
k=0

(tpUr)
kW k+1

2 ,W3, . . . ,Wn−r+2

)
.

Then h(W ) := H(x, u, v,W ) gives ψ′∗(h) = f |F ′ as in the proof of Lemma 11.12.

In the second case we assume F ′ is given for a certain r ∈ {1, . . . , n} by

(c1, cr+1, . . . , cn; π, πr+1, . . . , πn) where π ∈ R ̸=, |π| < |π1|,

{z ∈ Ra : |z − c1| ⩽ |π|} is disjoint from {z ∈ Ra : |z − cj | < |πj |} for j = 2, . . . , r and includes

{z ∈ Ra : |z − cj | < |πj |} for j = r + 1, . . . , n. Let f ∈ O(F ) with f = ψ∗(g), g ∈ R⟨Y ⟩ and take

G(X,Y ) ∈ A⟨X,Y ⟩ and x ∈ Rm such that g(Y ) = G(x, Y ). We show that then f |F ′ ∈ O(F ′). Let

ψ′ : F ′ → (Ra)n−r+1 be the map associated to (c1, cr+1, . . . , cn; π, πr+1, . . . , πn). For j = 2, . . . , r, z ∈ F ′,

πj
z − cj

=
πj

c1 − cj
· 1

1−
(
z−c1
cj−c1

) =
πj

c1 − cj
· 1

1−
(

π
cj−c1

z−c1
π

) =
vj

1− tuj z−c1π

with uj :=
π

τ(cj−c1) ∈ R and vj :=
πj

c1−cj ∈ R. We also set v1 := π
π1
∈ R. Let

V1, . . . , Vr, U2, . . . , Ur

be distinct indeterminates, different also from X1, . . . , Xm, Y1, . . . , Yn and set U := (U2, . . . , Ur), V :=

(V1, . . . , Vr), and let H ∈ Ã⟨X,U, V, Y1, Yr+1, . . . , Yn⟩ be

G(X,V1Y1, V2

∞∑
k=0

(tpU2)
kY k1 , . . . , Vr

∞∑
k=0

(tpUr)
kY k1 , Yr+1, . . . , Yn).
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Then for u := (u2, . . . , ur), v := (v1, . . . , vr), and

h(Y1, Yr+1, . . . , Yn) := H(x, u, v, Y1, Yr+1, . . . , Yn) ∈ R⟨Y1, Yr+1, . . . , Yn⟩

we have h
(
ψ′(z)

)
= g
(
ψ(z)

)
= f(z) for z ∈ F ′.

Divisibility in O(F ). We continue with our connected R-affinoid F and first deduce some easy

consequences of the material in the preceding subsection. Here is one: let Z be a single variable and

g(Z) ∈ K⟨Z⟩; then by Lemma 11.13 and the example preceding it the function z 7→ g(z) : F → Ka belongs

to O(F ).

Corollary 11.14. Let f ∈ O(F ), f ̸= 0. Then:

(i) f has only finitely many zeros in F ;

(ii) if f has no zeros in F , then f is a unit of O(F ).

Proof. Item (i) is immediate from Corollary 11.11. For (ii), take g ∈ K⟨Y ⟩ with f = ψ∗(g). Suppose f is not

a unit of O(F ). Then 1 /∈ gK⟨Y ⟩+ I(F ), so by Theorem 10.39(iii) we have y ∈ (Ra)n such that g(y) = 0 and

h(y) = 0 for all h ∈ I(F ). Then y ∈ Z
(
I(F )

)
= ψ(F ) (see the discussion preceding Lemma 11.9), and thus

f(z) = 0 for z ∈ F with y = ψ(z).

Corollary 11.15. Suppose r(Z) ∈ K(Z) has no poles in F . Then the function z 7→ r(z) : F → Ka belongs

to O(F ).

Proof. Take relatively prime f, g ∈ K[Z] such that r(Z) = f(Z)/g(Z). Then g(Z) has no zero in F . Now use

that by the remark at the beginning of this subsection and Corollary 11.14(ii), the function z 7→ g(z) : F → Ka

is a unit of O(F ).

Corollary 11.16. O(F ) is a principal ideal domain.

Proof. This follows from Corollaries 11.11 and 11.15 and the fact that the subring {r(Z) ∈ K(Z) :

r(Z) has no poles in F} of K(Z) is a localization of K[Z], and thus a principal ideal domain.

Corollary 11.17. Let f1, f2 ∈ O(F ) be such that |f1(z)| ⩽ |f2(z)| for all z ∈ F . Then f2 divides f1 in O(F ).

Proof. Let E1, E2 ∈ R⟨Y ⟩ and r1, r2 ∈ K(Z) be as in Corollary 11.11 for f1, f2, respectively. The case

where r1 = 0 or r2 = 0 is trivial. Assume r1, r2 ̸= 0. Since E1, E2 are units of R⟨Y ⟩ we have |ψ∗(E1)(z)| =
|ψ∗(E2)(z)| = 1 for all z ∈ F . Hence |r1(z)| ⩽ |r2(z)| for all z ∈ F . Clearly, if z ∈ F is a zero of r2 of order

ℓ, then z is also a zero of r1 of order at least ℓ. So r1/r2 ∈ K(Z) has no poles in F , and thus the function

z 7→ r2(z) in O(F ) divides (in O(F )) the function z 7→ r1(z) in O(F ). Therefore f2 divides f1 in O(F ).

The following important result requires more work.

Proposition 11.18. Suppose f ∈ O(F ) and |f(z)| ⩽ 1 for all z ∈ F . Then f = ψ∗(g) for some g ∈ R⟨Y ⟩.

Proof. Take g ∈ R⟨Y ⟩ and c ∈ R ̸= such that f = ψ∗(c−1g). Using Lemma 11.9 we can arrange g = g1+· · ·+gn
with gi ∈ R⟨Yi⟩ for i = 1, . . . , n, and gi(0) = 0 for 2 ⩽ i ⩽ n. We can assume g ̸= 0, so by Lemmas 10.23 and

10.36(i) we can arrange also that one of the gi has a coefficient outside O(R). We prove below that then there
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is a z ∈ F such that |g(ψ(z))| = 1 (and hence 1 ⩾ |f(z)| = |c−1|, so c−1g ∈ R⟨Y ⟩, and we are done). Take m,

x ∈ Rm, and elements
∑∞
k=0 a1k(X)Y k1 ∈ A⟨X,Y1⟩ and

∑∞
k=1 aik(X)Y ki in A⟨X,Yi⟩ for 2 ⩽ i ⩽ n, such that

g1(Y1) =

∞∑
k=0

a1k(x)Y
k
1 , gi =

∞∑
k=1

aik(x)Y
k
i for i = 2, . . . , n.

Case 1: |a1k(x)| = 1 for some k. After rearranging c2, . . . , cn we have s ∈ {1, . . . , n} such that for i = 2, . . . , s

there is k ⩾ 1 with |aik(x)| = 1 and |πi| = |π1|, while for i = s + 1, . . . , n, either |aik(x)| < 1 for all

k ⩾ 1, or |πi| < |π1|. Suppose z ∈ F and |z − ci| = |π1| for i = 2, . . . , n, and set y := ψ(z). If s < i ⩽ n

and |πi| < |π1|, then |yi| < 1. In any case, if s < i ⩽ n, then |gi(yi)| < 1 by Lemma 10.36(ii). Set

h(Y ) := g1(Y1) + · · · + gs(Ys) ∈ R⟨Y1, . . . , Ys⟩. By Lemma 10.36(i) we have k1, k2, . . . , ks ∈ N such that

h = h1 + h2 where

h1 :=

k1∑
k=0

a1k(x)Y
k
1 +

s∑
i=2

ki∑
k=1

aik(x)Y
k
i ∈ R[Y1, . . . , Ys]

and h2 ∈ R⟨Y1, . . . Ys⟩ has all its coefficients in O(R). By Lemma 10.36(ii) we have |g(y)| = |h(y)| = |h1(y)| = 1

for all y ∈ (Ra)n with |h1(y)| = 1. Using the new indeterminate U we now introduce the rational function

r(U) ∈ K(U) by

r(U) := h1
(
U,

π2
π1U + c1 − c2

, . . . ,
πs

π1U + c1 − cs
)
.

Setting cik := (πi/π1)
k and di := (ci − c1)/π1 ∈ R for 2 ⩽ i ⩽ s, 1 ⩽ k ⩽ ki we have |cik| = 1 for those i, k,

and |di − dj | = 1 for 2 ⩽ i < j ⩽ s, and

r(U) =

k1∑
k=0

a1k(x)U
k +

s∑
i=2

ki∑
k=1

aik(x)
cik

(U − di)k
.

Passing to the image r(U) of r(U) in k(U), each of the s resulting summands is nonzero with distinct

d2, . . . , ds ∈ k, so r(U) ̸= 0. This yields infinitely many u ∈ Ra with u ̸= d2, . . . , ds, u + ui ̸= 0 for

ui := (c1 − ci)/π1 with s < i ⩽ n, and |r(u)| = 1. For such u we take z := π1u+ c1. Then |z − c1| ⩽ |π1| and
|z − ci| = |π1| for i = 2, . . . , n, so z ∈ F and y = ψ(z) gives h1(y) = r(u), and thus |g(y)| = 1.

Case 2: |a1k(x)| < 1 for all k. One of the gi has a coefficient outside O(R), so after rearranging c2, . . . , cn we

have |a2k(x)| = 1 for some k ⩾ 1, and |π2| ⩾ |πi| whenever 2 < i ⩽ n and |aik(x)| = 1 for some k ⩾ 1. Since

|c2 − ci| ⩾ |π2| for 2 < i ⩽ n, we can also arrange s ∈ {2, . . . , n} is such that for all i with 2 < i ⩽ s we have

|aik(x)| = 1 for some k ⩾ 1 and |c2 − ci| = |πi| = |π2|, and for all i with s < i ⩽ n, either |aik(x)| < 1 for all

k ⩾ 1, or |c2 − ci| > |π2| ⩾ |πi|, or |c2 − ci| = |π2| > |πi|.
Suppose z ∈ K, |z − c2| = |π2|, and |z − ci| = |π2| whenever 2 < i ⩽ n and |c2 − ci| = |π2|. Then z ∈ F .

Set y := ψ(z), so |gi(yi)| < 1 for s < i ⩽ n. Set

h(Y ) := g2(Y2) + · · ·+ gs(Ys) ∈ R⟨Y2, . . . , Ys⟩.

Lemma 10.36(i) gives k2, . . . , ks ∈ N⩾1 such that h = h1 + h2 where

h1 :=

s∑
i=2

ki∑
k=1

aik(x)Y
k
i ∈ R[Y2, . . . , Ys]

and h2 ∈ R⟨Y2, . . . Ys⟩ has all its coefficients in O(R). By Lemma 10.36(ii) we have |g(y)| = |h(y)| = |h1(y)| = 1
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for all y ∈ (Ra)n with |h1(y)| = 1. We now introduce the rational function r(U) ∈ K(U) by

r(U) := h1
( π2
π2U + c2 − c2

, . . . ,
πs

π2U + c2 − cs
)
.

Setting cik := (πi/π2)
k, di := (ci − c2)/π2 for 2 < i ⩽ s, 1 ⩽ k ⩽ ki we have |cik| = 1 for those i, k, |di| = 1

for 2 < i ⩽ s, |di − dj | = 1 for 2 < i < j ⩽ s, and

r(U) =

k2∑
k=1

a2k(x)
1

Uk
+

s∑
i=3

ki∑
k=1

aik(x)
cik

(U − di)k
.

As in Case 1 we obtain u ∈ Ra such that u ̸= 0, d3, . . . , ds, |r(u)| = 1, and u+ ui ≠ 0 for ui := (c2 − ci)/π2
whenever s < i ⩽ n and |c2 − ci| = |π2|. For such u we take z := π2u + c2. Then |z − c2| = |π2|, and
|z − ci| = |π2| whenever 2 < i ⩽ n and |c2 − ci| = |π2|, so z ∈ F and y = ψ(z) gives h1(y) = r(u), and thus

|g(y)| = 1.

Corollary 11.19. I(F ) = ker(ψ∗), and so O(F ) ∼= K⟨Y ⟩/I(F ) as K-algebras.

Proof. Let g ∈ ker(ψ∗). To show g ∈ I(F ) we can arrange by Lemma 11.9 that g = g1 + · · · + gn with

gj = gj(Yj) ∈ K⟨Yj⟩ for j = 1, . . . , n and gj(0) = 0 for j = 2, . . . , n. We can assume g ̸= 0, and then the

proof of Proposition 11.18 shows that g(ψ(z)) ̸= 0 for some z ∈ F , contradicting the assumption on g.

Corollary 11.20. Let f1, . . . , fm ∈ O(F ) be such that |f1(z)|, . . . , |fm(z)| ⩽ 1 for all z ∈ F , and let

G ∈ A⟨X⟩, X = (X1, . . . , Xm). Then the function

z 7→ G
(
f1(z), . . . , fm(z)

)
: F → Ra

belongs to O(F ).

Proof. By Proposition 11.18 we have fi = ψ∗(gi) with gi ∈ R⟨Y ⟩ for i = 1, . . . ,m, and then for g :=

G(g1, . . . , gm) ∈ R⟨Y ⟩ we have G
(
f1(z), . . . , fm(z)

)
= g
(
ψ(z)

)
for all z ∈ F .

Relating O(F ) and OL(F ). Let L be intermediate between K and Ka and of finite degree over K,

that is, L is an A-extension of K and a substructure of the LA≼-structure Ka, and [L : K] <∞. Let RL be

the valuation A-ring of L. Then RL is viable by Lemma 10.26. Thus we have the notion of a connected

RL-affinoid G, and for such G we let OL(G) be the corresponding ring of affinoid functions G→ Ka. If F is

an R-affinoid, then F is also an RL-affinoid, and O(F ) = OK(F ) is a subring of OL(F ).

Lemma 11.21. Let F be a connected R-affinoid and b1, . . . , bm a basis of the vector space L over K. Then

the O(F )-module OL(F ) is free with basis b1, . . . , bm.

Proof. Recall that O(F ) = ψ∗(K⟨Y ⟩) ⊆ R(F ). Likewise, OL(F ) = ψ∗
L(L⟨Y ⟩) ⊆ RL(F ), where we use

the subscript L to indicate the dependence on L. For g ∈ L⟨Y ⟩ we have g = b1f1 + · · · + bmfm with

f1, . . . , fm ∈ K⟨Y ⟩ by Lemma 10.24, hence

ψ∗
L(g) = b1ψ

∗(f1) + · · ·+ bmψ
∗(fm) ∈ b1O(F ) + · · ·+ bmO(F ).

Thus the O(F )-module OL(F ) is generated by b1, . . . , bm.
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Suppose f1b1 + · · ·+ fmbm = 0 with f1, . . . , fm ∈ O(F ); it remains to show that then f1 = · · · = fm = 0.

Consider first the case that the residue field of K has more elements than the number of holes of F . Then

Lemma 11.7 gives an infinite set E ⊆ F ∩R. If fi ≠ 0, then we can take z ∈ E such that fi(z) ̸= 0, but this

would contradict f1(z)b1 + · · ·+ fm(z)bm = 0 and b1, . . . , bm being a basis of L over K. This argument shows

f1 = · · · = fm = 0. Consider next the case that the residue field k of K is finite with no more elements than

the number of holes of F . Then we consider k and the (finite) residue field kL of L as subfields of the residue

field ka of Ka. Take a finite subfield k1 of ka with k ⊆ k1 such that k1 has more elements than the number

of holes of F and k1 is linearly disjoint from kL over k. Let K1 be a valued subfield of Ka such that K1 is

an unramified algebraic extension of K with residue field k1, so [K1 : K] = [k1 : k]. Then the valued subfield

L1 := LK1 of Ka has the property that [L1 : L] ⩽ [K1 : K], but also [L1 : L] ⩾ [kLk1 : kL] = [k1 : k],

hence [L1 : L] = [K1 : K], so L and K1 are linearly disjoint over K. Thus b1, . . . , bm is also a basis of the

K1-linear space L1. Now the earlier argument with K1 and L1 instead of K and L show as before that

f1 = · · · = fm = 0.

Lemma 11.22. Let G be a connected RL-affinoid, F a connected R-affinoid such that F ⊆ G, and g ∈ OL(F ).

Suppose there are infinitely many z ∈ F ∩R with g(z) ∈ K. Then g|F ∈ O(F ).

Proof. Take a basis b1, . . . , bm of the vector space L over K with b1 = 1. Lemma 11.13 gives g|F ∈ OL(F ),
so g|F = f1b1 + · · ·+ fmbm with f1, . . . , fm ∈ O(F ), by Lemma 11.21. For z ∈ F ∩R with g(z) ∈ K we have

g(z) = f1(z)b1 + · · ·+ fm(z)bm ∈ K,

with all fi(z) ∈ K, so f2(z) = · · · = fm(z) = 0, and thus g(z) = f1(z). Since this is the case for infinitely

many z ∈ F we obtain g|F = f1 ∈ O(F ).
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CHAPTER 12

Analytic AKE-type equivalence and induced

structure results

12.1 Introducing Division

To develop our AKE-results for (suitable) valuation A-rings we add “restricted division” as a new primitive.

Accordingly we extend the language LA≼ by a symbol for this division. It will be essential to describe the

function given by any one-variable term in this extended language piecewise by affinoid functions. This will

force us to pass to A-extensions of finite degree. The key fact about this is Proposition 12.4.

We keep the assumptions from Sections 10.3 and 11.2 on A, R, K, Ra, Ka. Thus R is viable, Ka is

an algebraically closed A-extension of K and Ra is its valuation A-ring, and so R, K, Ra, Ka are all

LA≼-structures as specified earlier. For any A-extension L of K with valuation A-ring RL (in particular for

L = Ka) we now introduce the restricted division operation D : L2 → L by

D(a, b) := a/b if |a| ⩽ |b| ≠ 0, D(a, b) := 0 otherwise.

So D(L2) ⊆ RL. We extend the language LA≼ to the language LA≼,D by adding the binary function symbol

D, and expand the LA≼-structure L accordingly to the LA≼,D-structure L by interpreting D as above. This

makes R, K, and RL into LA≼,D-substructures of L. The language LA,L≼,D is LA≼,D augmented by names

(constant symbols), one for each element of L, and we construe L accordingly as an LA,L≼,D-structure. Recall

the sublanguage L≼ (for valued fields) of LA≼; augmenting it with names for the elements of L gives the

sublanguage LL≼ of LA,L≼,D.

Describing the A-extension generated over K by an element z. As before, L is an

A-extension of K. Let Z be an indeterminate and z ∈ L. Then any LA,K≼,D-term τ(Z) yields an element

τ(z) ∈ L. The set {τ(z) : τ(Z) is an LA,K≼,D-term} underlies a substructure of the LA≼,D-structure L, namely

the smallest substructure of the LA≼,D-structure L that contains K ∪ {z}; we do not claim this set it is the

underlying set of a subfield of L. Instead we call attention to the A-closed subring Rz of RL with underlying

set

{τ(z) : τ(Z) is an LA,K≼,D-term and τ(z) ≼ 1}.

Note: R ⊆ Rz; if z ≼ 1, then z ∈ Rz; if z ≻ 1, then z−1 ∈ Rz.

Lemma 12.1. Rz is a valuation ring dominated by RL.
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Proof. Let τ1(Z), τ2(Z) be LA,K≼,D-terms with τ1(z), τ2(z) ≼ 1. If τ1(z) ≼ τ2(z), then τ(Z) := D(τ1(Z), τ2(Z))

has the property that τ(z) ≼ 1 and τ1(z) = τ(z)τ2(z), and if τ2(z) ≼ τ1(z), then τ(Z) := D(τ2(Z), τ1(Z)) has

the property that τ(z) ≼ 1 and τ2(z) = τ(z)τ1(z). This gives that Rz is a valuation A-ring.

Let Kz be the fraction field of Rz inside L, equipped with the valuation A-ring Rz. This makes Kz into an

A-extension of K, and an LA≼,D-substructure of L. Thus τ(z) ∈ Kz for every LA,K≼,D-term τ(Z).

Corollary 12.2. Kz is the smallest substructure of the LA≼,D-structure L that contains K ∪ {z} and whose

underlying ring is a field. As a consequence, if z ≼ 1, then Rz is the smallest A-closed subring of RL that

contains R ∪ {z} and whose underlying ring is a valuation ring dominated by RL.

Corollary 12.3. If z is algebraic over K, then K(z) is the underlying field of Kz.

Proof. Suppose z is algebraic over K. Then the valued subfield K(z) of L expands uniquely to an A-extension

of K by Lemma 10.25. This A-extension is then an LA≼,D-substructure of L by Corollary 10.7. Now use

Corollary 12.2.

For our AKE-theory for valuation A-rings we need to understand better what data about z determine the

isomorphism type of the A-extension Kz over K. Section 10.4 basically settles this issue for the case when

Kz is an immediate A-extension. (In this connection we note that Rz and Kz as defined here agree with Rz

and Kz defined in Section 10.4 in the special case considered there.) For the general case we exploit below

our results on affinoids.

Towards this goal we now focus on the case L = Ka. Given a connected R-affinoid F we can represent

any function f ∈ O(F ) by an LA,K≼,D-term: let F be given by (c1, . . . , cn;π1, . . . , πn), with corresponding map

ψ : F → (Ra)n, and let f = ψ∗(g) with g ∈ K⟨Y ⟩, Y = (Y1, . . . , Yn). We have c ∈ K×, a point x ∈ Rm,
and a G ∈ A⟨X,Y ⟩, X = (X1, . . . , Xm), such that g = g(Y ) = c ·G(x, Y ), and thus g(y) = c ·G(x, y) for all

y ∈ (Ra)n. Then for all z ∈ F ,

f(z) = g
(
ψ(z)

)
= c ·G

(
x,D(z − c1, π1), D(π2, z − c2), . . . , D(πn, z − cn)

)
.

Conversely, we shall describe the function on Ra given by any LA,K≼,D-term explicitly as piecewise affinoid,

but the domains of the relevant affinoid functions are now connected RL-affinoids for some A-extension

L ⊆ Ka of K with [L : K] <∞. (In [30, Proposition 4.1] a related piecewise description was claimed without

allowing a proper finite degree extension, but the proof is defective. The introduction of Ã and the generalities

underlying it were motivated by having to correct this error.)

Univariate functions given by terms involving restricted division.. In this subsection

we let L range over the A-extensions of K that are substructures of the A-extension Ka of K and of finite

degree over K. For a connected RL-affinoid F we have the corresponding ring OL(F ) of affinoid functions

F → Ka.

Proposition 12.4. Let Z be an indeterminate, and τ(Z) an LA,K≼,D-term. Then there is an L, quantifier-

free LL≼-formulas ϕ1(Z), . . . , ϕn(Z), connected RL-affinoids F1, . . . , Fn and functions f1 ∈ OL(F1), . . . , fn ∈
OL(Fn) such that:

(i) Ra = ϕ1(R
a) ∪ · · · ∪ ϕn(Ra);

(ii) ϕj(R
a) ⊆ Fj and τ(z) = fj(z) for all z ∈ ϕj(Ra), for j = 1, . . . , n.
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Proof. By induction on the complexity of τ = τ(Z). For τ the name of an element of K or just the

variable Z one can take L = K, n = 1, and make the obvious choices of ϕ1, F1, f1. Next, given

L, ϕ1, . . . , ϕn, F1, . . . , Fn, f1, . . . , fn as in the proposition, we only need to replace each fj by −fj to make it

work for −τ instead of τ .

Suppose τ = τ1 + τ2. The inductive assumption gives L, quantifier-free LL≼-formulas ϕ11(Z), . . . , ϕ1n1
(Z)

and ϕ21(Z), . . . , ϕ2n2
(Z), connected RL-affinoids

F11, . . . , F1n1 , F21, . . . , F2n2 ,

and fij ∈ OL(Fij) for i = 1, 2 and j = 1, . . . , ni such that

• Ra = ϕ11(R
a) ∪ · · · ∪ ϕ1n1

(Ra) = ϕ21(R
a) ∪ · · · ∪ ϕ2n2

(Ra);

• ϕij(R
a) ⊆ Fij and τi(z) = fij(z) for all z ∈ ϕij(Ra).

Let 1 ⩽ j1 ⩽ n1 and 1 ⩽ j2 ⩽ n2 and set ϕj1j2 := ϕ1j1 ∧ϕ2j2 and Fj1j2 := F1j1 ∩F2j2 . Then ϕj1j2(R
a) ⊆ Fj1j2

and τ(z) = f1j1(z)+f2j2(z) for z ∈ ϕj1j2(Ra). Thus listing the nonempty Fj1j2 as F1, . . . , Fn, the corresponding

f1j1 |Fj1j2
+ f2j2 |Fj1j2

as f1, . . . , fn, and the corresponding ϕj1j2 as ϕ1, . . . , ϕn yields (i) and (ii). This also

uses Lemma 11.13. The case τ = τ1 · τ2, is handled in the same way.

Next, suppose τ = D(τ1, τ2), and let the ϕij , Fij , fij be as before and also define ϕj1j2 and Fj1j2 as

before. Consider one such pair j = (j1, j2) and set ϕj = ϕj1j2 and Fj = Fj1j2 . By increasing L and using

Corollaries 11.11 and 11.6 we obtain

{z ∈ Fj : |f1j1(z)| ⩽ |f2j2(z)|} = F j,1 ∪ · · · ∪ F j,n ∪ E

where F j,1, . . . , F j,n are connected RL-affinoids contained in Fj and E ⊆ Fj ∩ RL is finite. Let 1 ⩽ ν ⩽ n

and take f j,ν ∈ OL(F j,ν) with f1j1(z) = f j,ν(z)f2j2(z) for all z ∈ F j,ν ; such an f j,ν exists by Lemma 11.13

and Corollary 11.17. Corollary 11.11 gives a quantifier-free LL≼-formula ϕj,ν(Z) such that for all z ∈ Ra,

Ra |= ϕj,ν(z) ⇐⇒ z ∈ F j,ν and f2j2(z) ̸= 0.

Thus ϕj,ν(Ra) ⊆ F j,ν , and for z ∈ (ϕj ∧ϕj,ν)(Ra) we have τ(z) = f j,ν(z). For a ∈ E we have b := τ(a) ∈ RL,
(Z = a)(Ra) = {a} ⊆ Ra, and so for all z ∈ (Z = a)(Ra) we have τ(z) = b. Corollary 11.11 also gives a

quantifier-free LL≼-formula θj(Z) such that for all z ∈ Ra,

Ra |= θj(z) ⇐⇒ z ∈ Fj and
(
|f1j1(z)| > |f2j2(z)| or f2j2(z) = 0

)
.

Thus θj(R
a) ⊆ Fj , and for z ∈ (ϕj ∧ θj)(Ra) we have τ(z) = 0. Moreover, for the various pairs j above we

can take the same increased L.

Finally, suppose τ = G(τ1, . . . , τm). The inductive assumption gives L and for i = 1, . . . ,m quantifier-free

LL≼-formulas ϕi1(Z), . . . , ϕini
(Z), connected RL-affinoids Fi1, . . . , Fini

, and functions fi1 ∈ OL(Fi1), . . . , fini
∈

OL(Fini
) such that

• Ra = ϕi1(R
a) ∪ · · · ∪ ϕini

(Ra);

• ϕij(R
a) ⊆ Fij and τi(z) = fij(z) for all z ∈ ϕij(Ra) and j = 1, . . . , ni.
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Let j = (j1, . . . , jm) with 1 ⩽ j1 ⩽ n1, . . . , 1 ⩽ jm ⩽ nm and set

ϕj := ϕ1j1 ∧ · · · ∧ ϕmjm , Fj := F1j1 ∩ · · · ∩ Fmjm .

By increasing L and using Corollories 11.11 and 11.5 we arrange that

{z ∈ Fj : |f1j1(z)| ⩽ 1, . . . , |fmjm(z)| ⩽ 1} = F j,1 ∪ · · · ∪ F j,n

where F j,1, . . . , F j,n are connected RL-affinoids. Let 1 ⩽ ν ⩽ n and take a quantifier-free LL≼-formula ϕj,ν(Z)

such that for all z ∈ Ra,

Ra |= ϕj,ν(z) ⇐⇒ z ∈ F j,ν ,

and for i = 1, . . . ,m, set f j,νiji := fiji |F j,ν ∈ OL(F j,ν), so by Corollary 11.20,

f j,ν := G
(
f j,ν1j1

, . . . , f j,νmjm
)
∈ OL(F j,ν).

Then ϕj,ν(Ra) = F j,ν and τ(z) = f j,ν(z) for all z ∈ (ϕj ∧ ϕj,ν)(Ra). Also τ(z) = 0 for all z ∈ (ϕj ∧ ¬ϕj,1 ∧
¬ϕj,2 ∧ · · · ∧ ¬ϕj,n)(Ra) ⊆ Ra.

Corollary 12.5. For z ∈ Ra and Kalg the algebraic closure of K in Ka,

resKz ⊆ resKalg(z) ⊆ resKa, v(K×
z ) ⊆ v

(
Kalg(z)

×) ⊆ v
(
(Ka)×

)
.

As a consequence, Γ = v(K×) and v(K×
z ) have the same cardinality, and if resK is infinite, then resK and

resKz have the same cardinality.

Proof. Consider a nonzero element τ(z) ofKz, where τ(Z) is an LA,K≼,D-term. Let L and ϕ1, . . . , ϕn, F1, . . . , Fn, f1, . . . , fn

be as in Proposition 12.4. Take j ∈ {1, . . . , n} with z ∈ ϕj(Ra). Then Corollary 11.11 applied to L, Fj , fj

in the role of K, F, f yields ρ(Z) ∈ L(Z) without poles in F such that τ(z) ∼ ρ(z). This gives the desired

inclusions. The rest now follows from [29, Corollary 5.19].

The recursive construction of formulas, affinoids, and functions in the proof of Proposition 12.4 gives further

information recorded below. First we define for LA,K≼,D-terms τ of the form τ(Z) its complexity c(τ) by

recursion: c(τ) := 0 for τ the name of an element of K or the variable Z, c(τ) := 1 +
∑m
i=1 c(τi) if τ is

H(τ1, . . . , τm) for a function symbol H in LA≼,D of arity m and LA,K≼,D-terms τi(Z).

Corollary 12.6. The recursive construction in the proof of Proposition 12.4 yields ϕ1, . . . , ϕn, F1, . . . , Fn

such that for all j ∈ {1, . . . , n} one of the following holds:

• ϕj(R
a) is finite;

• τ(z) = τ ′(z) for an LA,K≼,D-term τ ′(Z) with c(τ ′) < c(τ) and all z ∈ ϕj(Ra);

• ϕj(R
a) = Fj \ Ej with finite Ej ⊆ Fj.

The proof of Corollary 12.6 is by a routine induction on c(τ) and close inspection of the constructions in the

proof of Proposition 12.4.
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Uniformity with respect to Ka. To enable model-theoretic arguments we need

ϕ1, . . . , ϕn, F1, . . . , Fn, f1, . . . , fn

in Proposition 12.4 to be in some sense independent of Ka. To state this accurately we introduce an algebraic

closure Kalg of K. By Lemma 10.25, Kalg expands uniquely to an A-extension of K. We let Kalg also denote

this A-extension, with Ralg as its A-valuation ring. In the rest of this section Z is an indeterminate.

Let Ka be any algebraically closed A-extension of K. Then there exists a field embedding Kalg → Ka over

K. Let ı be such a field embedding. Then ı is also an L≼-embedding by [2, Proposition 3.3.11]; alternatively,

use [29, Corollary 3.16] to get such a map. The L≼-theory of algebraically closed valued fields with nontrivial

valuation has quantifier elimination [29, Theorem 3.29], so

(⋆) ı(Kalg) is an elementary L≼-substructure of Ka.

For any LKalg

≼,D -formula ϕ(Z), let ıϕ(Z) be the LKa

≼,D-formula obtained by replacing every occurrence of a

name of an element a ∈ Kalg in ϕ by the name of ı(a) ∈ Ka. For LKalg

≼,D -definable P ⊆ Kalg, let
ıP be the

corresponding definable subset of Ka: if the LKalg

≼,D -formula ϕ(Z) defines P in Kalg, then
ıϕ(Z) defines ıP

in Ka. Thus if P is a connected Ralg-affinoid in the sense of the nontrivially valued field Kalg, then
ıP is a

connected Ra-affinoid in the sense of the nontrivially valued field Ka.

By Corollary 10.8, ı is also an LA≼,D-embedding, and we view ı(Kalg) accordingly as an LA≼,D-substructure of

Ka. Let L range over the A-extensions of K such that [L : K] <∞ and L is a substructure of the A-extension

Kalg of K. Let F be a connected RL-affinoid and consider the K-algebra OL(F ), both in the sense of Kalg

as the ambient A-extension of K. This yields the connected Rı(L)-affinoid ıF and the K-algebra Oı(L)(ıF ),
both in the sense of the A-extension Ka of K.

Lemma 12.7. For each f ∈ OL(F ) there is a unique ıf ∈ Oı(L)(ıF ) such that ı
(
f(z)

)
= ıf

(
ı(z)

)
for all

z ∈ F . Moreover, the map

f 7→ ıf : OL(F )→ Oı(L)(ıF )

is an isomorphism of K-algebras that commutes with restriction: for a connected RL-affinoid F ′ ⊆ F and

f ∈ OL(F ) we have ıF ′ ⊆ ıF and ı
(
f |F ′

)
= (ıf)|ıF ′ .

Proof. Let F ⊆ Ralg be given by (c1, . . . , cn;π1, . . . , πn), with corresponding map ψ : F → (Ralg)
n. Then

ıF ⊆ Ra is likewise given by (
ı(c1), . . . , ı(cn); ı(π1), . . . , ı(πn)

)
,

and we have the corresponding map ıψ : ıF → (Ra)n. Next, let f ∈ OL(F ) and take g = g(Y ) ∈ L⟨Y ⟩, Y =

(Y1, . . . , Yn) such that f = ψ∗(g). Take c ∈ K×, a point x ∈ RmL , and a G ∈ A⟨X,Y ⟩, X = (X1, . . . , Xm),

such that g(Y ) = c ·G(x, Y ). Then, with ı(x) :=
(
ı(x1), . . . , ı(xm)

)
, we set

ıg(Y ) := ı(c) ·G
(
ı(x), Y ) ∈ ı(L)⟨Y ⟩,

and ıf := ıψ∗(ıg) ∈ Oı(L)(ıF ). It is easy to check that then ı
(
f(z)

)
= ıf

(
ı(z)

)
for all z ∈ F . Uniqueness,

and the “Moreover” claim follow from Corollary 11.14(i).

136



With the above notational conventions we let

(
L;
(
ϕj ,Φj , Fj , fj)

n
j=1

)
denote a tuple such that for j = 1, . . . , n:

1. ϕj and Φj are quantifier-free LL≼-formulas ϕj(Z) and Φj(Z);

2. Fj is a connected RL-affinoid and fj ∈ OL(Fj);

3. Φj(Kalg) = Fj .

Here “connected RL-affinoid” and “OL(Fj)” are in the sense of Kalg as ambient algebraically closed A-

extension of K.

Let now τ(Z) be an LA,K≼,D-term. The tuple
(
L;
(
ϕj ,Φj , Fj , fj)

n
j=1

)
is said to be good for τ in (Ka, ı) if, in

addition to (1), (2), (3), the following hold:

(4) ϕ1, . . . , ϕn, F1, . . . , Fn, f1, . . . , fn satisfy (i) and (ii) in Proposition 12.4 with Kalg in the role of Ka

there;

(5) τ(z) = ıfj(z) for all z ∈ ıϕj(R
a) and j = 1, . . . , n;

Using (⋆), (4) implies Ra = ıϕ1(R
a) ∪ · · · ∪ ıϕn(Ra) and

ıϕ1(R
a) ⊆ ıF1, . . . ,

ıϕn(R
a) ⊆ ıFn.

Thus (5) makes sense if (4) holds.

Corollary 12.8. There exists a tuple
(
L; (ϕj ,Φj , Fj , fj)

n
j=1

)
such that for every algebraically closed A-

extension Ka of K and field embedding ı : Kalg → Ka over K this tuple is good for τ in (Ka, ı).

Proof. The construction of such a tuple is by recursion on τ , as in the proof of Proposition 12.4: Let i be the

inclusion K → Kalg. We follow the steps in that proof for (Kalg, i) in the role of (Ka, ı), and observe that

these steps then work for any (Ka, ı), by (⋆) and Lemma 12.7.

The quantifier-free type of an element over K. First we fix some terminology and notation.

For a valued field E and an element z in a valued field extension F of E, the quantifier-free L≼-type of z

over E is the set qftp≼(z|E) of all quantifier-free LE≼-formulas θ(Z) such that F |= θ(z). Likewise, for an

element z in an A-extension F of K, the quantifier-free LA≼,D-type of z over K is the set qftpA≼,D(z|K) of all

quantifier-free LA,K≼,D-formulas θ(Z) such that F |= θ(z).

The previous subsections are the ingredients for the following key fact:

Proposition 12.9. Let K1 and K2 be A-extensions of K, and suppose z1 ∈ K1 and z2 ∈ K2 satisfy

qftp≼(z1|K) = qftp≼(z2|K). Then

qftpA≼,D(z1|K) = qftpA≼,D(z2|K).

Proof. Our assumption gives an L≼-isomorphism i : K(z1) → K(z2) over K which sends z1 to z2. If z1 is

algebraic over K, then so is z2 and K(z1) and K(z2) underly the LA≼,D-substructures Kz1 and Kz2 of K1
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and K2, respectively, by Corollary 12.3, so i is an LA≼,D-isomorphism over K by Corollary 10.8. Hence z1 and

z2 have the same quantifier-free LA≼,D-type over K.

The remaining case is that z1 and z2 are both transcendental over K. Replacing z1, z2 by their reciprocals

if necessary, we arrange z1, z2 ≼ 1. We claim that for every LA,K≼,D-term τ(Z),

τ(z1) = 0 ⇐⇒ τ(z2) = 0.

For c, d in any A-extension of K, c ≼ d if and only if c = 0 or D(c, d) ̸= 0. Hence, in light of Corollary 12.2,

our claim yields an LA≼,D-isomorphism Kz1 → Kz2 over K given by τ(z1) 7→ τ(z2), where τ(Z) ranges over

LA,K≼,D-terms. Thus a proof of the claim will complete the proof of the proposition.

By passing to algebraic closures we arrange that K1 and K2 are algebraically closed. Let τ(Z) be an

LA,K≼,D-term such that τ(z1) = 0. Take a tuple

(
L;
(
ϕj ,Φj , Fj , fj)

n
j=1

)
as in Corollary 12.8 and field embeddings ı : Kalg → K1 and ȷ : Kalg → K2 over K. This gives j ∈ {1, . . . , n}
with z1 ∈ ıϕj(R

a), and thus z2 ∈ ȷϕj(R
b). Then τ(z1) =

ıfj(z1) = 0, so fj = 0 by Corollary 11.11 and z1

being transcendental over K. Hence τ(z2) =
ıfj(z2) = 0. This proves the forward direction of our claim. The

backward direction follows in the same way.

When is Kz an immediate extension of K(z)?. Let Ka be an algebraically closed A-extension

of K and z ∈ Ka. It is plausible that Kz is then always an immediate extension of its valued subfield K(z).

Indeed, this is the case when z is algebraic over K by Corollary 12.3, and also when chark = 0 and K(z) is

an immediate extension of K, by Proposition 10.40 and [27, Corollaries 4.16, 4.22].

In the next section, where chark = 0, we require such immediacy in two more cases, treated in Proposi-

tions 12.10 and 12.12 below.

To prepare for the proof of Proposition 12.10 we consider a valued subfield L of Ka such that K ⊆ L and

[L : K] = m. Suppose z ∈ Ra and z is transcendental over k. Then [29, Lemma 3.22] gives for the valued

subfields K(z) ⊆ L(z) of Ka (in addition to [L(z) : K(z)] = m):

ΓK(z) = Γ, ΓL(z) = ΓL, resK(z) = k(z), resL(z) = kL(z).

In the proofs of the next two propositions L ranges over the A-extensions of K that are substructures of the

A-extension Ka of K and of finite degree over K.

Proposition 12.10. Assume that k is infinite. Let z ∈ Ra, and suppose that z is transcendental over k.

Then v(K×
z ) = Γ and resKz = k(z), so Kz is an immediate extension of K(z).

Proof. Consider an LA,K≼,D-term τ(Z) such that τ(z) ̸= 0. Proposition 12.4 and Corollary 11.11 give L and

ρ(Z) ∈ L(Z) such that z is not a pole of ρ and

τ(z) ∼ ρ(z) ∈ L(z).

Hence τ(z) ≍ b with b ∈ L×. Then τ(Z) ≍ b is in qftpA≼,D(z|L). Proposition 12.9 with L instead of K says

that qftpA≼,D(z|L) is determined by its subset qftp≼(z|L). Moreover, qftp≼(z|L) contains all LL≼-formulas

q(Z) ≍ 1 with monic q(Z) ∈ RL[Z], and is determined by these formulas since z is transcendental over kL.
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Hence (the punch line) compactness and taking products gives a single monic q(Z) ∈ RL[Z] such that for all

u ∈ Ra, if q(u) ≍ 1, then τ(u) ≍ b. Since k is infinite we have u ∈ R such that q(u) ̸= 0. Then q(u) ≍ 1, so

τ(u) ≍ b, and τ(u) ∈ K, so v(τ(z)) = v(b) = v(τ(u)) ∈ Γ. This concludes the proof of v(K×
z ) = Γ.

To obtain resKz = k(z) we show for LA,K≼,D-terms τ(Z) that

τ(z) ≼ 1 ⇒ res τ(z) ∈ k(z).

If τ(z) ≺ 1, then res τ(z) = 0 and we are done, so assume τ(z) ≍ 1. Proposition 12.4 and Corollary 11.11 give

L and ρ(Z) ∈ L(Z) such that z is not a pole of ρ and τ(z) ∼ ρ(z) ∈ L(z). Suppose towards a contradiction that

res τ(z) /∈ k(z). With [L : K] = m, take b1, . . . , bm ∈ RL with b1 = 1 such that b1, . . . , br is a basis of kL over

k and thus of kL(z) over k(z). Then τ(z) ∼ ρ(z) ∼ b1ρ1(z)+ · · ·+ bmρm(z) where ρ1(Z), . . . , ρm(Z) ∈ K(Z),

ρi(z) ≼ 1 for i = 1, . . . ,m, and ρi(z) ≍ 1 for some i ∈ {2, . . . ,m}, say for i = 2. Hence

τ(Z) ∼ b1ρ1(Z) + · · ·+ bmρm(Z) ∧ ρ1(Z) ≼ 1 ∧ · · · ∧ ρm(Z) ≼ 1 ∧ ρ2(Z) ≍ 1

belongs to qftpA≼,D(z|L). Using Proposition 12.9 and compactness as before yields a monic q(Z) ∈ RL[Z]
such that for all u ∈ Ra, if q(u) ≍ 1, then

τ(u) ∼ b1ρ1(u) + · · ·+ bmρm(u), ρ1(u), . . . , ρm(u) ≼ 1, ρ2(u) ≍ 1.

Now take u ∈ R such tht q(u) ≍ 1. Then τ(u) ∈ K, a contradiction.

To prepare for the next proposition, recall from [29, Lemma 3.23] that if z ̸= 0 and dv(z) /∈ Γ for all d ⩾ 1,

then with [L : K] = m we obtain [L(z) : K(z)] = m, and

ΓK(z) = Γ + Zv(z), ΓL(z) = ΓL + Zv(z), resK(z) = k, resL(z) = kL.

Instead of requiring that k be infinite we shall impose in the next proposition that Γ is a Z-group and that

Rz is viable. First a lemma:

Lemma 12.11. Assume Γ is a Z-group, Rz is viable, z ≠ 0, and dv(z) /∈ Γ for all d ⩾ 1. Suppose ze ≺ b,
where e ⩾ 1, b ∈ K×. Then ze ≺ ue ≺ b for some u ∈ K×.

Proof. With α := ev(z) and β := vb we have β < α, and thus β+n < α for all n, where n = v(tn) with t ∈ R
such that O(R) = tR: otherwise β + n < α < β + (n+ 1) for some n, and hence 0 < α− (β + n) < 1 for such

n, which by Corollary 10.28 yields a d ⩾ 1 with d ·
(
α− (β + n)

)
∈ Γ, and thus dev(z) ∈ Γ contradicting the

assumption on z. Since Γ is a Z-group we can take n ⩾ 1 such that β + n = eγ with γ ∈ Γ. Then u ∈ K×

with v(u) = γ gives ze ≺ ue ≺ b.

Proposition 12.12. Assume Γ is a Z-group, Rz is viable, z ≠ 0, and dv(z) /∈ Γ for all d ⩾ 1. Then Kz is

an immediate extension of K(z), equivalently,

v(K×
z ) = Γ + Zv(z), res(Kz) = k.

Proof. To emulate the idea behind the proof of Proposition 12.10 we describe qftp≼(z|K). Let b, b1, b2 range

over K× and e over N⩾1. If vz > Γ, then qftp≼(z|K) contains all formulas 0 ̸= Z ≺ b and is by [29, Lemma

3.23] determined by those formulas, so by Proposition 12.9 and compactness there is for any formula θA(Z)
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in qftpA≼,D(z|K) a b such that Ka |= 0 ̸= Z ≺ b → θA(Z). Likewise, if vz < Γ, there is for any formula

θA(Z) in qftpA≼,D(z|K) a b such that Ka |= b ≺ Z → θA(Z). The remaining case is that γ1 < vz < γ2

for some γ1, γ2 ∈ Γ. Then qftp≼(z|K) contains all formulas b1 ≺ Ze ≺ b2 such that b1 ≺ ze ≺ b2, and is

determined by these formulas in view of [29, Lemma 3.23]. As before we see that for any formula θA(Z) in

qftpA≼,D(z|K) there are b1, b2 with b1 ≺ ze ≺ b2 such that Ka |= b1 ≺ Ze ≺ b2 → θA(Z). So far we did not

use the assumption that Γ is a Z-group and Rz is viable.

To obtain v(K×
z ) = Γ+Zv(z) we consider an LA,K≼,D-term τ(Z) with τ(z) ̸= 0; our job is to show that then

v(τ(z)) ∈ Γ + v(z)Z. As in the proof of Proposition 12.10 we have L and ρ(Z) ∈ L(Z) such that z is not a

pole of ρ and τ(z) ∼ ρ(z), so

v(τ(z)) = v(ρ(z)) = γ + kv(z), γ ∈ ΓL, k ∈ Z.

Suppose γ /∈ Γ. Take d ⩾ 1 such that dγ ∈ Γ, so dγ = vb with vb /∈ dΓ. Then τ(z)d ≍ b ·zkd, so τ(Z)d ≍ b ·Zkd

belongs to qftpA,K≼,D(z|K). At this point we use the assumption that Γ is a Z-group and Rz is viable: Using

Lemma 12.11 and the facts about qftp≼(z|K) stated in the beginning of the proof we obtain u ∈ K× such

that τ(u)d ≍ b · ukd, which in combination with τ(u) ∈ K× gives v(b) ∈ dΓ, a contradiction.

To obtain resKz = k, let τ(Z) be as before with τ(z) ≍ 1; our job is to show that res
(
τ(z)

)
∈ k. With L

and ρ(Z) as before we have res τ(z) = res ρ(z) ∈ kL. Take a monic q(Z) ∈ R[Z] such that q(Z) ∈ k[Z] is

irreducible and q(τ(z)) ≺ 1. Then τ(Z) ≍ 1 ∧ q(τ(Z)) ≺ 1 is in qftpA,K≼,D(z|K), and so the usual argument

gives u ∈ K× such that τ(u) ≍ 1 and q(τ(u)) ≺ 1. But then τ(u) ∈ K, so the irreducible q(Z) ∈ k[Z] must

have degree 1, and so res τ(z) ∈ k.

12.2 An analytic Equivalence Theorem

We begin with some terminology and conventions. A valued field will be construed as an L≼-structure in the

usual way.

Let K be a valued field. We denote its valuation ring by R (by RF if we are dealing with a valued field F

instead). Let O(R) be the maximal ideal of R and k := R/O(R) the residue field of K. We also let v : K× → Γ

with Γ = v(K×) be a valuation on the field K such that R = {z ∈ K : v(z) ⩾ 0} (and if we are dealing

instead with a valued field F , we have likewise the residue field kF and a valuation vF : F× → ΓF ).

A coefficient field of K is a lift of k, that is, a subfield C of K such that C ⊆ R and C maps bijectively

onto k under the residue map R → k, equivalently, a subfield C of K such that R = C + O(R). Likewise,

a monomial group of K is a lift of Γ, that is, a subgroup G of K× that is mapped bijectively onto Γ by

v : K× → Γ. If K is henselian (by which we mean that the local ring R is henselian) and k has characteristic

0, then K has a coefficient field; see for example [29, Lemma 2.9]. If K is algebraically closed or ℵ1-saturated,
then K has a monomial group; see for example [2, Lemmas 3.3.32, 3.3.39].

Let G be a monomial group of K. Then we can introduce an “absolute value” function | · |G : K → K as

follows: |0|G = 0, and for a ∈ K×,

|a|G = g, where g ∈ G, a ∈ gR×.

This function is definable in the expansion (K,G) of the valued field K, takes values in G ∪ {0}, and is the

identity on G∪ {0}. Let in addition C be a coefficient field of K. Then we introduce an “angular component”
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map ac : K → K as follows: ac(0) := 0, and for a ∈ K×,

ac(a) = c, with c ∈ C× such that a ∈ |a|G
(
c+ O(R)

)
.

This function is definable in the expansion (K,C,G) of the valued field K, takes values in C and is the

identity on C.

Throughout A is as in Section 10.3: A is noetherian with an ideal O(A) ̸= A, such that
⋂
e O(A)

e = {0} and
A is O(A)-adically complete.

By an A-field we mean a valued field F whose valuation ring RF is equipped with an A-analytic structure;

we construe an A-field as an LA≼,D-structure in the obvious way. Thus any A-extension of F is an A-field.

By an Acg-field we mean an expansion F = (F,C,G) of an A-field F where C is (the underlying set of) a

coefficient field of F and G is (the underlying set of) a monomial group G of F . Let LAcg≼,D be the language

LA≼,D augmented by unary predicate symbols C and G. We construe an Acg-field as an LAcg≼,D-structure in

the obvious way.

Example to keep in mind: F =
(
F,C, tZ

)
, where C is any field, F is the Laurent series field C((t)) with

valuation ring C[[t]], and A = C[[t]], O(A) = tC[[t]], with the natural A-analytic structure on C[[t]]. To

simplify notation we denote this Acg-field F by
(
C((t)), C, tZ

)
.

In the rest of this section K = (K,C,G) is an Acg-field such that the valuation A-ring R of K is viable; k is

the residue field of K and Γ := v(K×) its value group.

Good substructures and good maps. Our aim is to establish an analogue of the Equivalence

Theorem [29, 5.21] in our analytic setting with coefficient field and monomial group, and we follow the general

setup and proof strategy there.

A good substructure of K is an LAcg≼,D-substructure E = (E,CE , GE) of K which is also an Acg-field. Note that

then E is an LA≼,D-substructure of K, and

CE = C ∩ E = ac(E), GE = G ∩ E = |E×|G.

Below, E = (E,CE , GE) is a good substructure of K. By Lemma 10.27 the valuation A-ring RE is viable. For

a ∈ K, set Ea :=
(
Ea, C ∩ Ea, G ∩ Ea

)
⊆ K.

Lemma 12.13. We consider four cases for an element a ∈ C ∪G:

(i) a ∈ C is algebraic over E. Then a is algebraic over CE , E[a] is the underlying field of Ea, C∩Ea = CE [a],

and G ∩ Ea = GE ;

(ii) C is infinite and a ∈ C is transcendental over E. Then Ea is an immediate extension of E(a),

C ∩ Ea = CE(a), and G ∩ Ea = GE ;

(iii) a ∈ G is algebraic over E. Then ad ∈ GE for some d ⩾ 1, E[a] is the underlying field of Ea, C∩Ea = CE ,

and G ∩ Ea = GE · aZ;

(iv) v(E×) is a Z-group, a ∈ G, and a is transcendental over E. Then Ea is an immediate extension of

E(a), C ∩ Ea = CE , and G ∩ Ea = GE · aZ.
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In each of these four cases, Ea is a good substructure of K.

Proof. If a ∈ C ∪ G is algebraic over E, this follows from Corollary 12.3. In the transcendental case, use

Propositions 12.10 and 12.12.

In this subsection, K′ = (K ′, C ′, G′) is an Acg-field like K: its valuation A-ring R′ is viable. We also let

E ′ = (E′, CE′ , GE′) be a good substructure of K′, and for a′ ∈ K ′ we set E ′a′ :=
(
E′
a′ , C

′ ∩ E′
a′ , G

′ ∩ E′
a′

)
.

Let Lr := {0, 1,+,−, ·} be the language of rings and Lv := {1, ·,≼} the language of (multiplicative) ordered

abelian groups, taken as sublanguages of LA≼,D; we construe C,C ′ as Lr-structures and G,G′ as Lv-structures
accordingly.

A good map f : E → E ′ is an LAcg≼,D-isomorphism E → E ′ such that:

(r) the Lr-isomorphism f |CE : CE → CE′ is a partial elementary map from C to C ′;

(v) the Lv-isomorphism f |GE : GE → GE′ is a partial elementary map from G to G′.

Theorem 12.14. Suppose chark = 0 and Γ is a Z-group. Let f : E → E ′ be a good map. Then f is a partial

elementary map from K to K′.

Proof. By passing to suitable elementary extensions we can and do assume that the underlying valued fields

of K and K′ are κ-saturated, where κ is an uncountable cardinal greater than the cardinalities of CE and GE .

A good substructure

E1 = (E1, CE1 , GE1)

of K is termed small if κ is greater than the cardinalities of CE1 and GE1 . We shall prove that for any

a ∈ K we can extend f to a good map with small domain F ⊇ E such that a ∈ F . By the properties of

“back-and-forth” this suffices. In addition to Corollary 10.41, we will need the extension procedures in (1)–(4)

below.

In (1) and (2) we assume a ∈ C and extend E and E ′ to small good substructures F of K and F ′ of K′

and our good map f to a good map g : F → F ′ such that a ∈ CF and GE = GF . In (3) and (4) we assume

(among other things) that a ∈ G, and extend E and E ′ to small good substructures F of K and F ′ of K′ and

our good map f to a good map g : F → F ′ such that a ∈ GF and CE = CF .

(1) The case that a ∈ C is algebraic over E. By κ-saturation of K′ we obtain an Lr-isomorphism gr : CE [a]→
CE′ [a′] extending f |CE and sending a to a′ such that gr is a partial elementary map from C to C ′.

Now [29, Lemma 3.21] gives an L≼-isomorphism g : E[a]→ E′[a′] extending both f and gr. Then g is an

LA≼,D-isomorphism Ea → E′
a′ by Corollary 12.3 and Proposition 12.9. By Lemma 12.13 (i), Ea and E ′a′ are

good substructures of K and K′ respectively, and g is a good map.

(2) The case that a ∈ C is transcendental over E. As in (1) we have a′ ∈ C ′ and an Lr-isomorphism

gr : CE(a)→ CE′(a′) extending f |CE and sending a to a′ such that gr is a partial elementary map from C to

C ′.

Then [29, Lemma 3.22] gives an L≼-isomorphism E(a) → E′(a′) extending both f and gr. This L≼-

isomorphism extends to an LA≼,D-isomorphism g : Ea → E′
a′ by Proposition 12.9. Lemma 12.13(ii) gives that

Ea and E ′a′ are good substructures of K and K′ respectively, and that g is a good map.

(3) The case that a ∈ G \ GE and ap ∈ GE , where p is a prime number. As before we get a′ ∈ G′ and

an Lv-isomorphism gv : GE · aZ → GE′ · a′Z extending f |GE and sending a to a′ such that gv is a partial

elementary map from G to G′. Now [29, Lemma 5.6] gives an L≼-isomorphism g : E(a)→ E′(a′) extending
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both f and gv. Then g is an LA≼,D-isomorphism Ea → E′
a′ by Corollary 12.3 and Proposition 12.9. By

Lemma 12.13(iii), Ea and E ′a′ are good substructures of K and K′ respectively, and g is a good map.

(4) The case that a ∈ G and ad /∈ GE for all d ⩾ 1. Here we also assume that v(E×) is a Z-group. As before
we get a′ ∈ G′ and an Lv-isomorphism gv : GE · aZ → GE′ · a′Z extending f |GE and sending a to a′ such that

gv is a partial elementary map from G to G′. Note that a is transcendental over E by [29, Proposition 3.19];

likewise, a′ is transcendental over E′.

Now [29, Lemma 3.23] gives an L≼-isomorphism E(a) → E′(a′) extending both f and gv. This L≼-

isomorphism extends to an LA≼,D-isomorphism g : Ea → E′
a′ by Proposition 12.9. By Lemma 12.13(iv), Ea

and E ′a′ are good substructures of K and K′ respectively, and g is a good map.

We did not require for our initial E that v(E×) is a Z-group. But the ambient value group Γ is a Z-group, so
for ∆ := v(E×) ⊆ Γ and setting

∆̃ := {γ ∈ Γ : dγ ∈ ∆ for some d ⩾ 1}

we obtain an ordered subgroup ∆̃ of Γ that is a Z-group with the same least positive element as Γ and with

the same cardinality as ∆. Thus we can use (3) iteratively and form a directed union to extend our initial E
and E ′ to good substructures F of K and F ′ of K′ and our initial good map f to a good map g : F → F ′

such that v(F×) = ∆̃ (a Z-group) and CF = CE . Note also that ∆̃ is the smallest (under inclusion) ordered

subgroup of Γ with the same least element of Γ that contains ∆ and is a Z-group. Moreover, the value group

of the domain of the good map g obtained in (4) is ∆⊕ Zva, which is not a Z-group.

Let now any a ∈ K be given. Let C1 be the subfield of C such that resC1 = resEa, and let G1 be the

subgroup of G such that v(G1) = ∆̃a where ∆a := v(E×
a ). We do not guarantee that C1 ⊆ Ea or G1 ⊆ E×

a ,

but CE and C1 have the same cardinality, and so do GE and G1, by Corollary 12.5 and the remarks above.

Thus by iterating (1)–(4), we extend E and E ′ to small good substructures E1 = (E1, C1, G1) of K and

E ′1 = (E′
1, C

′
1, G

′
1) of K′, and extend f to a good map f1 : E1 → E ′1. Next, let C2 be the subfield of C such

that resC2 = resE1,a, and let G2 be the subgroup of G such that v(G2) = ∆̃1,a where ∆1,a := v(E×
1,a), and

obtain likewise E2 = (E2, C2, G2) with E1 ⊆ E2 ⊆ K, and an extension of f1 to a good map f2 : E2 → E ′2, with
E ′1 ⊆ E ′2 ⊆ K′. Continuing this way we obtain for each n small good substructures

En = (En, Cn, Gn) ⊆ En+1 = (En+1, Cn+1, Gn+1)

of K such that resCn+1 = resEn,a and v(Gn+1) = ∆̃n,a where ∆n,a = v(E×
n,a), and small good substructures

E ′n ⊆ E ′n+1 of K′, and good maps

fn : En → E ′n, fn+1 : En+1 → E ′n+1

such that fn+1 extends fn; here E0 := E , E ′0 := E ′ and f0 := f . Then

E∞ :=
⋃
n

En = (E∞, C∞, G∞)

is a small good substructure of K, and E ′∞ :=
⋃
n E ′n = (E′

∞, C
′
∞, G

′
∞) is a small good substructure of K′,

and we have a good map f∞ : E∞ → E ′∞ extending each fn. Using E∞,a =
⋃
nEn,a we see that E∞,a is an

immediate extension of E∞.
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If a ∈ E∞ we have achieved our goal of extending f to a good map with small domain containing a, so

assume a /∈ E∞. Replacing a by a−1 if necessary we arrange a ≼ 1. Take a divergent pc-sequence (aρ) in

E∞ such that all aρ ≼ 1 and aρ ⇝ a. Then (a′ρ) :=
(
f∞(aρ)

)
is a divergent pc-sequence in E′

∞. Since the

underlying valued field of K′ is κ-saturated and the cardinality of the value group of E′
∞ is less than κ we

have a′ ∈ K ′ such that a′ρ ⇝ a′. Note that (aρ) is of transcendental type over E∞, by [29, 4.22, 4.16]. Hence

(a′ρ) is of transcendental type over E′
∞, and so E′

∞,a′ is an immediate extension of E′
∞ by Proposition 10.40.

This yields the (small) good substructures E∞,a :=
(
E∞,a, C∞, G∞

)
of K and E ′∞,a′ :=

(
E′

∞,a′ , C
′
∞, G

′
∞
)

of K′. Moreover, f∞ extends by Corollary 10.41 to a good map E∞,a → E ′∞,a′ , and we have achieved our

goal.

Corollary 12.15. Suppose chark = 0, Γ is a Z-group, CE ≼ C as Lr-structures, and GE ≼ G as Lv-
structures. Then E ≼ K.

Proof. Note that E is a good substructure of both K and K′ := E , and the identity on E is a good map. Now

apply Theorem 12.14.

Induced structure on coefficient field and monomial group. In this subsection we assume

for our Acg-field K = (K,C,G) that chark = 0 and Γ is a Z-group. Our aim here is Corollary 12.17 on the

structure that K induces on C and G combined. It will be derived in a familiar way from Theorem 12.14

and a fact implicit in its proof. To state that fact we let E = (E,CE , GE) and F = (F,CF , GF ) be Acg-fields

and LAcg≼,D-extensions of K. For a ∈ En, let tp(a|K) be the LAcg≼,D-type of a over K, that is, the set of

LAcg,K≼,D -formulas ϕ(Y1, . . . , Yn) such that E |= ϕ(a). Likewise, for c ∈ CnE , let tp(c|C) be the Lr-type of c over

C, and for g ∈ GnE , let tp(g|G) be the Lv-type of g over G.

Lemma 12.16. Suppose E and F are elementary extensions of K. Let cE ∈ CmE , gE ∈ GnF and cF ∈ CmF ,

gF ∈ GnF be such that

tp(cE |C) = tp(cF |C), tp(gE |G) = tpG(gF |G).

Then for the points (cE , gE) ∈ Em+n and (cF , gF ) ∈ Fm+n we have

tp
(
(cE , gE)|K

)
= tp

(
(cF , gF )|K

)
.

Proof. By our assumptions K is a good substructure of both E and F , and the identity on K is a good

map. Using tp(cE |C) = tp(cF |C) and the extension procedures (1) and (2) in the proof of Theorem 12.14 in

conjunction with Lemma 12.13(i), (ii) we obtain a good map whose domain contains the elements of K and

the components of cE and that is the identity on K and sends cE to cF , such that the monomial group of its

domain is still GE . Next we use likewise the extension procedures from (3) and (4) in that proof to extend

this good map further so that its domain now contains the components of gE as well, and sends sends gE to

gF . It remains to use Theorem 12.14.

Corollary 12.17. Each subset of Cm ×Gn ⊆ Km+n which is definable in K is a finite union of “rectangles”

P ×Q with P ⊆ Cm definable in the Lr-structure C and Q ⊆ Gn definable in the Lv-structure G.

Proof. Apply Lemma 12.16 in conjunction with [29, Lemmas 5.13, 5.14].

Corollary 12.18. If P ⊆ Kn is definable in K, then P ∩Cn is definable in the Lr-structure C, and P ∩Gn

is definable in the Lv-structure G.
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How does the above relate to the Binyamini-Cluckers-Novikov result? We construe

C((t)) below as an A-field in the usual way, with A = C[[t]], O(A) = tA. Proposition 2 in [12] concerns the

3-sorted structureM consisting of the following:

the A-field C((t)), the field C, the ordered abelian group Z,

(each a 1-sorted structure) and two functions relating the three sorts: the obvious t-adic valuation v :

C((t))× → Z, and the “reduced angular component map” ac : C((t)) → C that assigns to each nonzero

Laurent series f =
∑
k∈Z ckt

k (all ck ∈ C) its leading coefficient cv(f), with ac(0) := 0 by convention.

This 3-sortedM should not be confused with the 1-sorted
(
C((t)),C, tZ

)
that is among the Acg-fields K

considered in this section. The natural interpretation ofM in
(
C((t)),C, tZ

)
shows that if a set P ⊆ C((t))n is

definable inM, then it is definable in
(
C((t)),C, tZ

)
. The converse fails: the sets C, tZ ⊆ C((t)) are definable

in the latter but not in the former (see [27, Theorem 3.9]); thus the latter is “richer” than the former.

For d ⩾ 1 we let C[t]<d be the set of polynomials in C[t] of degree < d. Then C[t]<d is a subset of C[[t]],
and thus of C((t)). We identify C[t]<d with Cd via the bijection c0 + c1t+ · · ·+ cd−1t

d−1 7→ (c0, . . . , cd−1)

for c0, . . . , cd−1 ∈ C. For P ⊆ C((t))n we set P (d) := P ∩ (C[t]<d)n, which under the identification above

becomes a subset of Cdn. Now Proposition 2 in [12] says:

if P ⊆ C((t))n is definable in M, then for each d ⩾ 1 the set P (d) ⊆ Cdn is a constructible subset of the

space Cdn with its Zariski topology.

By “Chevalley-Tarski” a subset of Cm is constructible iff it is definable in the field C, so this proposition is

for K =
(
C((t)),C, tZ

)
a special case of Corollary 12.18.
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