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Abstract. We consider the four structures (Z; SFZ
), (Z;<,SFZ

), (Q; SFQ
),

and (Q;<,SFQ
) where Z is the additive group of integers, SFZ is the set of

a ∈ Z such that vp(a) < 2 for every prime p and corresponding p-adic valuation

vp, Q and SFQ are defined likewise for rational numbers, and < denotes the

natural ordering on each of these domains. We prove that the second struc-
ture is model-theoretically wild while the other three structures are model-

theoretically tame. Moreover, all these results can be seen as examples where

number-theoretic randomness yields model-theoretic consequences.

1. Introduction

In [9], Kaplan and Shelah showed under the assumption of Dickson’s conjecture that
if Z is the additive group of integers implicitly assumed to contain the element 1 as a
distinguished constant and the map a↦ −a as a distinguished function, and if Pr is
the set of a ∈ Z such that either a or −a is prime, then the theory of (Z; Pr) is model
complete, decidable, and super-simple of U-rank 1. From our current point of view,
the above result can be seen as an example of a more general phenomenon where
we can often capture aspects of randomness inside a structure using first-order logic
and deduce in consequence several model-theoretic properties of that structure. In
(Z; Pr), the conjectural randomness is that of the set of primes with respect to
addition. Dickson’s conjecture is useful here as it reflects this randomness in a
fashion which can be made first-order. The second author’s work in [14] provides
another example with similar themes.

Our viewpoint in particular predicts that there are analogues of Kaplan and She-
lah’s results with Pr replaced by other random subsets of Z. We confirm the above
prediction in this paper without the assumption of any conjecture when Pr is re-
placed with the set

SFZ = {a ∈ Z ∶ for all p primes, vp(a) < 2}
where vp is the p-adic valuation associated to the prime p. We have that Z is a
structure in the language L of additive groups augmented by a constant symbol for
1 and a function symbol for a ↦ −a. Then (Z; SFZ) is a structure in the language

Lu extending L by a unary predicate symbol for SFZ (as indicated by the additional
subscript “u”). We will introduce a first-order notion of genericity which captures

the partial randomness in the interaction between SFZ and the additive structure
on Z. Using a similar idea as in [9], we obtain:
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Theorem 1.1. The theory of (Z; SFZ) is model complete, decidable, supersimple
of U-rank 1, and is k-independent for all k ∈ N≥1.

The above theorem gives us without assuming any conjecture the first natural
example of a simple unstable expansion of Z. From the same notion of genericity, we
deduce entirely different consequences for the structure (Z;<,SFZ) in the language
Lou extending Lu by a binary predicate symbol for the natural ordering < (as
indicated by the additional subscript “o”):

Theorem 1.2. The theory of (Z;<,SFZ) interprets arithmetic.

The proof here is an adaption of the strategy used in [2] to show that the theory
of (N;+,<,Pr) with Pr the set of primes interprets arithmetic. The above two
theorems are in stark contrast with one another in view of the fact that (Z;<) is
a minimal proper expansion of Z; indeed, it is proven in [6] that adding any new
definable set from (Z;<) to Z results in defining <. On the other hand, it is shown
in [7] that there is no strong expansion of the theory of Presburger arithmetic, so
Theorem 1.2 is perhaps not entirely unexpected.

It is also natural to consider the structures (Q; SFQ) and (Q;<,SFQ) where Q is
the additive group of rational numbers, also implicitly assumed to contain 1 as a
distinguished constant and a↦ −a as a distinguished function,

SFQ = {a ∈ Q ∶ vp(a) < 2 for all primes p},

and the relation < on Q is the natural ordering. The reader might wonder why chose
the above SFQ instead of SFZ or ASFQ = {a ∈ Q ∶ ∣vp(a)∣ < 2 for all primes p}.
From Lemma 2.2 in the next section, we get SFQ + SFQ = Q, SFZ + SFZ = Z, and
ASFQ +ASFQ = {a ∶ vp(a) > −2 for all primes p}. Hence, equipping Q and (Q;<)
with either SFZ or ASFQ will result in structures expanding a infinite-index pair of
infinite abelian groups with a unary predicate on the smaller group, and therefore,
having rather different flavors from (Z; SFZ) and (Z;<,SFZ).

Viewing (Q; SFQ) and (Q;<,SFQ) in the obvious way as an Lu-structure and an
Lou-structure, the main new technical aspect is in showing that these two structures
satisfy suitable notions of genericity and leveraging on them to prove:

Theorem 1.3. The theory of (Q; SFQ) is model complete, decidable, simple but
not supersimple, and is k-independent for all k ∈ N≥1.

From above, (Q; SFQ) is “less tame” than (Z; SFZ). The reader might therefore

expect that (Q;<,SFQ) is wild. However, this is not the case:

Theorem 1.4. The theory (Q;<,SFQ) is model complete, decidable, is NTP2 but
is not strong, and is k-independent for all k ∈ N≥1.

The paper is arranged as follows. In section 2, we define the appropriate notions
of genericity for the structures under consideration. The model completeness and
decidability results are proven in section 3 and the combinatorial tameness results
are proven in section 4.
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Notation and conventions. Let h, k and l range over the set of integers and let
m, n, and n′ range over the set of natural numbers (which include zero). We let
p range over the set of prime numbers, and denote by vp the p-adic valuation on
Q. Let x be a single variable, y a tuple of variables of unspecified length, z the
tuple (z1, . . . , zn) of variables, and z′ the tuple (z′1, . . . , z′n′) of variables. For an n-
tuple a of elements from a certain set, we let ai denote the i-th component of a for
i ∈ {1, . . . , n}. Suppose G is an additive abelian group. We equip Gm with a group
structure by setting + on Gm to be the coordinate-wise addition. Viewing G and
Gm as Z-module, we define ka with a ∈ G and kb with b ∈ Gm accordingly. Suppose,
G is moreover an L-structure with 1G the distinguished constant. We write k for
k1G. For A ⊆ G, we let L(A) denote the language extending L by adding constant
symbols for elements of A and view G as an L(A) structure in the obvious way.

2. Genericity of the examples

We study the structure (Z; SFZ) indirectly by looking at its definable expansion to
a richer language. For given p and l, set

UZ
p,l = {a ∈ Z ∶ vp(a) ≥ l}.

Let UZ = (UZ
p,l). The definition for l ≤ 0 is not too useful as UZ

p,l = Z in this case.

However, we still keep this for the sake of uniformity as we treat (Q; SFQ) later.
For m > 0, set

PZ
m = {a ∈ Z ∶ vp(a) < 2 + vp(m) for all p}.

In particular, PZ
1 = SFZ. Let PZ = (PZ

m)m>0. We have that (Z,UZ,PZ) is a structure
in the language L∗u extending Lu by families of unary predicate symbols for UZ and
(PZ

m)m>1. Note that

UZ
p,l = Z for l ≤ 0, UZ

p,l = plZ for l > 0, and PZ
m = ⋃

d∣m

dSFZ for m > 0.

Hence, UZ
p,l and P

Z
m are definable in (Z,SFZ), and so a subset of Z is definable in

(Z;UZ,PZ) if and only if it is definable in (Z,SFZ) .
Let (G;PG,UG) be an L∗u-structure. Then UG is a family indexed by pairs (p, l),
and PG is a family indexed by m. For p, l, and m, define UG

p,l ⊆ G to be the member

of UG with index (p, l) and PG
m ⊆ G to be the member of the family PG with index

m. In particular, we have UG = (UG
p,l) and PG = (PG

m)m>0. Clearly, this generalizes
the previous definition for Z.

We isolate the basic first-order properties of (Z;UZ,PZ). Let Sf∗Z be a recursive set
of L∗u-sentences such that an L∗u-structure (G;UG,PG) is a model of Sf∗Z if and only
if (G;UG,PG) satisfies the following properties:

(Z1) (G;+,−,0,1) is elementarily equivalent to (Z;+,−,0,1);
(Z2) UG

p,l = G for l ≤ 0, and UG
p,l = plG for l > 0;

(Z3) 1 is in PG
1 ;

(Z4) for any given p, we have that pa ∈ PG
1 if and only if a ∈ PG

1 and a ∉ UG
p,1;

(Z5) PG
m = ⋃d∣m dPG

1 for all m > 0.
The fact that we could choose Sf∗Z to be recursive follows from the well-known
decidability of Z. Clearly, (Z;UZ,PZ) is a model of Sf∗Z. Several properties which
hold in (Z;UZ,PZ) also hold in an arbitrary model of Sf∗Z:
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Lemma 2.1. Let (G;UG,PG) be a model of Sf∗Z. Then we have the following:

(i) (G;UG) is elementarily equivalent to (Z;UZ);
(ii) for all k, p, l, and m > 0, we have that

k ∈ UG
p,l if and only if k ∈ UZ

p,l and k ∈ PG
m if and only if k ∈ PZ

m;

(iii) for all h ≠ 0, p, and l, we have that ha ∈ UG
p,l if and only if a ∈ UG

p,l−vp(h)
;

(iv) if a ∈ G is in UG
p,2+vp(m)

for some p, then a ∉ PG
m ;

(v) for all h ≠ 0 and m > 0, ha ∈ PG
m if and only if we have

a ∈ PG
m and a ∉ UG

p,2+vp(m)−vp(h)
for all p which divides h;

(vi) for all h > 0 and m > 0, a ∈ PG
m if and only if ha ∈ PG

mh.

Proof. Fix a model (G;UG,PG) of Sf∗Z. It follows from (Z2) that the same first-
order formula defines both UG

p,l in G and UZ
p,l in Z. Then using (Z1), we get (i). The

first assertion of (ii) is immediate from (i). Using this, (Z3), and (Z4), we get the
second assertion of (ii) for the case m = 1. For m ≠ 1, we reduce to the case m = 1
using property (Z5). Statement (iii) is an immediate consequence of (i). We only
prove below the cases m = 1 of (iv − vi) as the remaining cases of the corresponding
statements can be reduced to these using (Z5). Statement (iv) is immediate for the
case m = 1 using (Z2) and (Z4). The case m = 1 of (v) is precisely the statement
of (Z4) when h is prime, and then the proof proceeds by induction. For the case
m = 1 of (vi), (→) follows from (Z5), and (←) follows through a combination of Z5,
(v) and induction on the number of prime divisors of h. □

We next consider the structures (Q; SFQ) and (Q;<,SFQ). For given p, l, and
m > 0, in the same fashion as above, we set

UQ
p,l = {a ∈ Q ∶ vp(a) ≥ l} and PQ

m = {a ∈ Q ∶ vp(a) < 2 + vp(m) for all p},

and let

UQ = (UQ
p,l) and PQ = (PQ

m)m>0.
Then (Q;UQ,PQ) is a structure in the language L∗u. Clearly, every subset of Qn

definable in (Q; SFQ) is also definable in (Q;UQ,PQ). A similar statement holds

for (Q;<,SFQ) and (Q;<,UQ,PQ). We will show that the reverse implications are
also true.

The next lemma backs up the discussion on SFQ and ASFQ preceding Theorem 1.3
in the introduction.

Lemma 2.2. SFZ + SFZ = Z, SFQ + SFQ = Q, and ASFQ + ASFQ = {a ∶ vp(a) >
−2 for all p}.

Proof. We first prove that any integer k is a sum of two elements from SFZ. As
SFZ = −SFZ and the cases where k = 0 or k = 1 are immediate, we assume that
k > 1. It follows from [13] that the number of square-free positive integers less
than k is at least 53k

88
. Since 53

88
> 1

2
, this implies k can be written as a sum of two

positive square-free integers which gives us SFZ + SFZ = Z. Using this, the other
two equalities follow immediately. □

Lemma 2.3. For all p and l, UQ
p,l is existentially 0-definable in (Q; SFQ).
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Proof. As UQ
p,l+n = pnU

Q
p,l for all l and n, it suffices to show the statement for l = 0.

Fix a prime p. We have for all a ∈ SFQ that

vp(a) ≥ 0 if and only if p2a ∉ SFQ.

Using Lemma 2.2, for all a ∈ Q, we have that vp(a) ≥ 0 if and only if there are
a1, a2 ∈ Q such that

(a1 ∈ SFQ ∧ vp(a1) ≥ 0) ∧ (a2 ∈ SFQ ∧ vp(a2) ≥ 0) and a = a1 + a2.

Hence, the set UQ
p,0 = {a ∈ Q ∶ vp(a) ≥ 0} is existentially definable in (Q; SFQ). The

desired conclusion follows. □

It is also easy to see that for all m, PQ
m = mSFQ for all m > 0, and so PQ

m is

existentially 0-definable in (Q; SFQ). Combining with Lemma 2.3, we get:

Proposition 2.4. Every subset of Qn definable in (Q;UQ,PQ) is also definable in

(Q; SFQ). The corresponding statement for (Q;<,UQ,PQ) and (Q;<,SFQ) holds.

In view of the first part of Proposition 2.4, we can analyze (Q; SFQ) via (Q;UQ,PQ)
in the same way we analyze (Z; SFZ) via (Z;UZ,PZ). Let Sf∗Q be a recursive set of

L∗u-sentences such that an L∗u-structure (G;UG,PG) is a model of Sf∗Q if and only

if (G;UG,PG) satisfies the following properties:

(Q1) (G;+,−,0,1) is elementarily equivalent to (Q;+,−,0,1);
(Q2) for any given p, UG

p,0 is an n-divisible subgroup of G for all n coprime with
p;

(Q3) 1 ∈ UG
p,0 and 1 ∉ UG

p,1;

(Q4) for any given p, p−lUG
p,l = UG

p,0 if l < 0 and Up,l = plUp,0 if l > 0;
(Q5) UG

p,0/UG
p,1 is isomorphic as a group to Z/pZ;

(Q6) 1 ∈ PG
1 ;

(Q7) for any given p, we have that pa ∈ PG
1 if and only if a ∈ PG

1 and a ∉ UG
p,1;

(Q8) PG
m =mPG

1 for m > 0;
The fact that we could choose Sf∗Q to be recursive follows from the well-known

decidability of Q. Obviously, (Q;UQ,PQ) is a model of Sf∗Q. Several properties

which hold in (Q;UQ,PQ) also hold in an arbitrary model of Sf∗Q:

Lemma 2.5. Let (G;UG,PG) be a model of Sf∗Q. Then we have the following:

(i) For all p and all l, l′ ∈ Z with l ≤ l′, we have UG
p,l is a subgroup of G,

UG
p,l′ ⊆ UG

p,l. Further, we can interpret UG
p,l/UG

p,l′ as an L-structure with 1

being pl +UG
p,l′ , and

UG
p,l/UG

p,l′ ≅L Z/(pl
′
−lZ);

(ii) for all h, k ≠ 0, p, l, and m > 0, we have that

h

k
∈ UG

p,l if and only if
h

k
∈ UQ

p,l and
h

k
∈ PG

m if and only if
h

k
∈ PQ

m

where hk−1 is the obvious element in Q and in G;
(iii) the replica of (iii − vi) of Lemma 2.1 holds.
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Proof. Fix a model (G;UG,PG) of Sf∗Q. From (Q2) we have that UG
p,0 is a subgroup

of G for all p. It follows from (Q4) that UG
p,l′ ⊆ UG

p,l are subgroups of G for all p and

l ≤ l′. With UG
p,l/UG

p,l′ being interpreted as an L-structure with 1 being pl +UG
p,l′ , we

get an L-embedding of Z/(pl′−lZ) into UG
p,l/UG

p,l′ using (Q3) and (Q4). Further, we

see that ∣UG
p,l/UG

p,l′ ∣ = p(l
′
−l) using (Q2)-(Q5) and induction on l′ − l together with

the third isomorphism theorem; and so the aforementioned embedding must be an
isomorphism, finishing the proof for (i). The first assertion of (ii) follows easily
from (Q2)-Q(4). The second assertion for the case m = 1 follows from the first
assertion, (Q6), and (Q7). Finally, the case with m /= 1 follows from the case m = 1
using (Q8). The proof for the replica of (iii) from Lemma 2.1 is a consequence of
(i) and (Q4). The proofs for replicas of (iv − vi) from Lemma 2.1 are similar to the
proofs for (iv − vi) of Lemma 2.1. □

As the reader may expect by now, we will study (Q;<,SFQ) via (Q;<,UQ,PQ).
Let L∗ou be Lou ∪ L∗u. Then (Q;<,UQ,PQ) can be construed as an L∗ou-structure
in the obvious way. Let OSf∗Q be a recursive set of L∗ou-sentences such that an

L∗ou-structure (G;UG,PG) is a model of OSf∗Q if and only if (G;UG,PG) satisfies
the following properties:

(1) (G;<) is elementarily equivalent to (Q;<);
(2) (G;UG,PG) is a model of Sf∗Q.

As Th(Q;<) is decidable, we could choose OSf∗Q to be recursive.

Returning to the theory Sf∗Z, we see that it does not fully capture all the first-order
properties of (Z,UZ,PZ). For instance, we will show later in Corollary 2.12 that
for all c ∈ Z, there is a ∈ Z such that

a + c ∈ SFZ and a + c + 1 ∈ SFZ,

while the interested reader can construct models of Sf∗Z where the corresponding
statement is not true. Likewise, the theories Sf∗Q and OSf∗Q do not fully capture all

the first-order properties of (Q;UQ,PQ) and (Q;<,UQ,PQ).
To give a precise formulation of the missing first-order properties of (Z,UZ,PZ),
(Q;UQ,PQ), and (Q;< UQ,PQ), we need more terminologies. Let t(z) be an L∗u-
term (or equivalently an L∗ou-term) with variables in z. An L∗u-formula (or an L∗ou-
formula) which is a boolean combination of formulas having the form t(z) = 0 where
we allow t to vary is called an equational condition. Similarly, an L∗ou-formula
which is a boolean combination of formulas having the form t(z) < 0 where t is
allowed to vary is called an order-condition. For any given p, l define t(z) ∈ Up,l

to be the obvious formula in L∗u(z) which defines in an arbitrary L∗u-structure
(G;UG,PG) the set

{c ∈ Gn ∶ tG(c) ∈ UG
p,l}.

Define the quantifier-free formulas t(z) ∉ Up,l, t(z) ∈ Pm, and t(z) ∉ Pm in L∗u(z) for
p, l, and for m > 0 likewise. For each prime p, an L∗u-formula (or an L∗ou-formula)
which is a boolean combination of formulas of the form t(z) ∉ Up,l where t and l are
allowed to vary is called a p-condition. We call a p-condition as in the previous
statement trivial if the boolean combination is the empty conjunction.

A parameter choice of variable type (x, z, z′) is a triple (k,m,Θ) such that k is
in Z ∖ {0}, m is in N≥1, and Θ = (θp(x, z, z′)) where θp(x, z, z′) is a p-condition for
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each prime p and is trivial for all but finitely many p. We say that an L∗u-formula
ψ(x, z, z′) is special if it has the form

⋀
p

θp(x, z, z′) ∧
n

⋀
i=1

(kx + zi ∈ Pm) ∧
n′

⋀
i′=1

(kx + z′i ∉ Pm)

where k,m and θp(x, z, z′) are taken from a parameter choice of variable type
(x, z, z′). Every special formula corresponds to a unique parameter choice and
vice versa. Special formulas are special enough that we have a “local to global”
phenomenon in the structures of interest but general enough to represent quantifier
free formulas. We will explain the former point in the remaining part of the section
and make the latter point precise with Theorem 3.1.

Let ψ(x, z, z′) be a special formula with parameter choice (k,m,Θ) and θp(x, z, z′)
is the p-condition in Θ for each p. We define the associated equational condition
of φ(x, z, z′) to be the formula

n

⋀
i=1

n′

⋀
i′=1

(zi ≠ z′i′)

and the associated p-condition of φ(x, z, z′) to be the formula

θp(x, z, z′) ∧
n

⋀
i=1

(kx + zi ∉ Up,2+vp(m)).

It is easy to see that modulo Sf∗Z or Sf∗Q, an arbitrary special formula implies its
associated equational condition and its associated p-condition for any prime p.

Suppose (G;UG,PG) and (H;UH ,PH) are L∗u-structures such that the former is
an L∗u-substructure of the latter. Let ψ(x, z, z′) be a special formula, ψ=(z, z′) the
associated equational condition, and ψp(x, z, z′) the associated p-condition for any

given prime p. For c ∈ Gn and c′ ∈ Gn′ , we call the quantifier-free L∗u(G)-formula
ψ(x, c, c′) a G-system. An element a ∈ H such that ψ(a, c, c′) holds is called a
solution of ψ(x, c, c′) in H. We say that ψ(x, c, c′) is satisfiable in H if it has
a solution in H and infinitely satisfiable in H if it has infinitely many solutions
in H. We say that ψ(x, c, c′) is nontrivial if ψ=(c, c′) holds or more explicitly if
c and c′ have no common components. For a given p, we say that ψ(x, c, c′) is
p-satisfiable in H if there is ap ∈ H such that ψp(ap, c, c′) holds. A G-system is
locally satisfiable in H if it is p-satisfiable in H for all p.

Suppose (G;<,UG,PG) and (H;<,UH ,PH) are L∗ou-structures such that the former
is an L∗ou-substructure of the latter. All the definitions in the previous paragraph
have obvious adaptations to this new setting as (G;UG,PG) and (H;UH ,PH) are
L∗u-structures. For b and b

′ in H such that b < b′, define

(b, b′)H = {a ∈H ∶ b < a < b′}.

A G-system ψ(x, c, c′) is satisfiable in every H-interval if it has a solution in
the interval (b, b′)H for all b and b′ in H such that b < b′. The following observation
is immediate:

Lemma 2.6. Suppose (G;UG,PG) is a model of either Sf∗Z or Sf∗Q. Then every
G-system which is satisfiable in G is nontrivial and locally satisfiable in G.
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It turns out that the converse and more are also true for the structures of interest.
We say that a model (G;UG,PG) of either Sf∗Z or Sf∗Q is generic if every nontrivial

locally satisfiable G-system is infinitely satisfiable in G. An OSf∗Q model (G;<
,UG,PG) is generic if every nontrivial locally satisfiable G-system is satisfiable
in every G-interval. We will later show that (Z;UZ,PZ), (Q;UQ,PQ), and (Q;<
,UQ,PQ) are generic.

Before that we will show that the above notions of genericity are first-order. Let
ψ(x, z, z′) be the special formula corresponding to a parameter choice (k,m,Θ)
with Θ = (θp(x, z, z′)). A boundary of ψ(x, z, z′) is a number B ∈ N>0 such that
B >max{∣k∣, n} and θp(x, z, z′) is trivial for all p > B.

Lemma 2.7. Let ψ(x, z, z′) be a special formula, B a boundary of ψ(x, z, z′), and
(G;UG,PG) a model of either Sf∗Z or Sf∗Q. Then every G-system ψ(x, c, c′) is p-
satisfiable for p > B.

Proof. Let ψ(x, z, z′) be the special formula corresponding to a parameter choice
(k,m,Θ), and B, (G;UG,PG) as in the statement of the lemma. Suppose ψ(x, c, c′)
is a G-system, p > B, and ψp(x, z, z′) is the associated p-condition of ψ(x, z, z′).
Then ψp(x, c, c′) is equivalent to

n

⋀
i=1

(kx + ci ∉ Up,2+vp(m)) in (G;UG,PG).

We will show a stronger statement that there is a ap ∈ Z satisfying the latter. Note
that for all d ∉ UG

p,0, we have that (ka + d ∉ Up,0) for all a ∈ Z. From Lemma

2.5, we have that UG
p,l ⊆ UG

p,k whenever k < l, so we can assume that ci ∈ UG
p,0 for

i ∈ {1, . . . , n}. In light of Lemma 2.1 (i) and Lemma 2.5 (i), we have that

UG
p,0/UG

p,2+vp(m)
≅L Z/(p2+vp(m)Z).

It is easy to see that k is invertible mod p2+vp(m) and that p2+vp(m) > n. Choose ap
in {0, . . . , p2+vp(m)−1} such that the images of kap+c1, . . . , kap+cn in Z/(p2+vp(m)Z)
are not 0. We check that ap is as desired. □

Corollary 2.8. There is an L∗u-theory SF∗Z such that the models of SF∗Z are the
generic models of Sf∗Z. Similarly, there is an L∗u-theory SF∗Q and an L∗ou-theory

OSF∗Q satisfying the corresponding condition for Sf∗Q and OSf∗Q.

In the rest of the paper, we fix SF∗Z, SF∗Q, and OSF∗Q to be as in the previous
lemma. We can moreover arrange them to be recursive. In the remaining part
of this section, we will show that (Z;UZ,PZ), (Q;UQ,PQ) and (Q;<,UQ,PZ) are
models of SF∗Z, SF

∗
Q, and OSF∗Q respectively. The proof that the latter are in fact the

full axiomatizations of the theories of the former needs to wait until next section.
Further we fix SFZ and SFQ to be the theories whose models are precisely the Lu-
reducts of models of SF∗Z and SF∗Q respectively, and OSFQ to be the theory whose

models are precisely Lou reducts of models of OSF∗Q. For the reader’s reference,
the following table lists all the languages, the corresponding theories and primary
structures under consideration:



THE GROUPS Z AND Q WITH PREDICATES FOR BEING SQUARE-FREE 9

Languages Theories Primary structures

L Th(Z), Th(Q) Z,Q
Lu SFZ, SFQ (Z; SFZ), (Q; SFQ)
Lou OSFQ (Z;<,SFZ), (Q;<,SFQ)
L∗u Sf∗Z, SF

∗
Z, Sf

∗
Q, SF

∗
Q (Z;UZ,PZ), (Q;UQ,PQ)

L∗ou OSf∗Q, OSF∗Q (Q;<,UQ,PQ)

Suppose h ≠ 0. For a term t(z) = k1z1 + . . . + knzn + e, let th(z) be the term
k1z1+. . .+knzn+he. If φ(z) is a boolean combination of atomic formulas of the form
t(z) ∈ Up,l or t(z) ∈ Pm where t(z) is an L∗u-term, define φh(z) to be the formula

obtained by replacing t(z) ∈ Up,l and t(z) ∈ Pm in φ(z) with th(z) ∈ Up,l+vp(h) and

th(z) ∈ Pmh for every choice of p, l, m and L∗u-term t. It follows from Lemma 2.1
(iii), (vi) and Lemma 2.5 (iii) that across models of Sf∗Z and Sf∗Q,

φh(hz) is equivalent to φ(z).
Moreover, if θ(z) is a p-condition, then θh(z) is also p-condition. If ψ(x, z, z′)
is the special formula corresponding to a parameter choice (k,m,Θ) with Θ =
(θp(x, z, z′)), then ψh(x, z, z′) is the special formula corresponding to the parameter

choice (k, hm,Θh) with Θh = (θhp (x, z, z′)). It is easy to see from here that:

Lemma 2.9. For h ≠ 0, any boundary of a special formula ψ(x, z, z′) is also a
boundary of ψh(x, z, z′) and vice versa.

Let ψ(x, z, z′) be a special formula, (G;UG,PG) a model of either Sf∗Z or Sf∗Q, and

ψ(x, c, c′) a G-system. Then ψh(x,hc, hc′) is also a G-system which we refer to as
the h-conjugate of ψ(x, c, c′). This has the property that ψh(ha,hc, hc′) if and
only if ψ(a, c, c′) for all a ∈ G.
For a and b in Z, we write a ≡n b if a and b have the same remainder when divided
by n. We need the following version of Chinese remainder theorem:

Lemma 2.10. Suppose B is in N>0, Θ is a family (θp(x, z))p≤B of L∗u-formulas

with θp(x, z) being a p-condition for each p ≤ B, and c ∈ Zn is such that θp(x, c)
defines a nonempty set in (Z;UZ,PZ) for all p ≤ B. Then we can find D ∈ N>0 and
r ∈ {0, . . . ,D − 1} such that for all h ≠ 0 with gcd(h,B!) = 1, we have

a ≡D hr implies ⋀
p≤B

θhp (a, hc) for all a ∈ Z.

Proof. Let B, Θ, and c be as stated. Fix h ≠ 0 such that gcd(h,B!) = 1. Hence,
vp(h) = 0 for p ≤ B, and so the p-condition θhp (x, z) is obtained from the p-condition
θp(x, z) by replacing any atomic formula kx+ t(z) ∈ Up,l appearing in θp(x, z) with
kx + th(z) ∈ Up,l. Now for p ≤ B, let lp be the largest value of l occurring in an
atomic formula in θp(x, z). Set

D = ∏
p≤B

plp .

Obtain ap ∈ Z such that θp(ap, c) holds in (Z;UZ,PZ). Equivalently, we have

θhp (hap, hc) holds in (Z;UZ,PZ). By the Chinese remainder theorem, we get r in
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{0, . . . ,D − 1} such that
r ≡plp ap for all p ≤ B.

We check that r is as desired. Suppose a ∈ Z is such that a ≡D hr. By construction,
if p ≤ B, l ≤ lp, and kx + t(z) ∈ Up,l is any atomic formula, then ka + th(hc) ∈ UZ

p,l

if and only if k(hap) + th(hc) ∈ UZ
p,l. It follows that θhp (a, hc) is equivalent to

θhp (hap, hc) in (Z;UZ,PZ). Thus θhp (a, hc) holds for all p ≤ B. □

Towards showing that the structures of interest are generic, the key number-
theoretic ingredient we need is the following result:

Lemma 2.11. Let ψ(x, z, z′) be a special formula and ψ(x, c, c′) a nontrivial Z-
system which is locally satisfiable in Z. For h > 0, and s, t ∈ Q with s < t, set

Ψh(hs, ht) = {a ∈ Z ∶ ψh(a, hc, hc′) holds and hs < a < ht}.
Then there exists N ∈ N>0, ε ∈ (0,1), and C ∈ R such that for all h > 0 with
gcd(h,N !) = 1 and s, t ∈ Q with s < t, we have that

∣Ψh(hs, ht)∣ ≥ εh(t − s) − (
n

∑
i=1

√
∣hks + hci∣ +

√
∣hkt + hci∣) +C.

Proof. Throughout this proof, let ψ(x, z, z′), ψ(x, c, c′), and Ψh(hs, ht) be as
stated. We first make a number of observations. Suppose ψ(x, z, z′) corresponds
to the parameter choice (k,m,Θ) and has a boundary B, and ψp(x, z, z′) is the as-
sociated p-condition of ψ(x, z, z′). Then ψh(x, z, z′) corresponds to the parameter
choice (k, hm,Θh), and B is also a boundary of ψh(x, z, z′) by Lemma 2.9. More-
over ψh

p (x, z, z′) is the associated p-condition of ψh(x, z, z′). Since ψ(x, c, c′) is

locally satisfiable in Z, we can use Lemma 2.10 to fix D ∈ N>0 and r ∈ {0, . . . ,D−1}
such that for each h > 0 with gcd(h,B!) = 1, we have

a ≡D hr implies ⋀
p≤B

ψh
p (a, hc, hc′) for all a ∈ Z.

We note that D here is independent of the choice of h for all h with gcd(h,B!) = 1.
We introduce a variant of Ψh(hs, ht) which is needed in our estimation of

∣Ψh(hs, ht)∣. Until the end of the proof, set lp = 2 + vp(m). Fix primes p1, . . . , pn′

such that p1 > ci for all i ∈ {1, . . . , n}, p1 > c′i′ for all i′ ∈ {1, . . . , n′} and
B < p1 < . . . < pn′ .

For M > pn′ , h > 0 with gcd(h,B!) = 1, define Ψh
M(hs, ht) to be the set of a ∈ Z

such that hs < a < ht and

(a ≡D hr) ∧ ⋀
B<p≤M

(
n

⋀
i=1

(ka + hci /≡plp+vp(h) 0)) ∧
n′

⋀
i′=1

(ka + hc′i′ ∉ PZ
hm).

It is not hard to see that Ψh(hs, ht)∩{a ∈ Z ∶ a ≡D hr} ⊆ Ψh
M(hs, ht), and the latter

is intended to be an upper approximation of the former. The desired lower bound
for ∣Ψh(hs, ht)∣ will be obtained via a lower bound for ∣Ψh

M(hs, ht)∣ and an upper
bound for ∣Ψh

M(hs, ht) ∖Ψh(hs, ht)∣.
Now we work towards establishing a lower bound on ∣Ψh

M(hs, ht))∣ in the case
where M > pn′ , h > 0, and gcd(h,M !) = 1. The latter assumption implies in

particular that plp+vp(h) = plp for all p ≤M . For p > B, we have that p > ∣k∣ and so
k is invertible mod plp . Set

∆ = {p ∶ B < p ≤M} ∖ {pi′ ∶ 1 ≤ i′ ≤ n′}.
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For p ∈ ∆, as k is invertible mod plp , there are at least plp − n (note we have
p > B > n) choices of rp in {0, . . . , plp − 1} such that if a ≡plp rp, then

n

⋀
i=1

(ka + hci /≡plp 0).

Suppose p = pi′ for some i′ ∈ {1, . . . , n′}. By the assumption that ψ(x, c, c′) is
nontrivial, c has no common components with c′. Since gcd(h,M !) = 1, h and p are
coprime, and so the components of hc and hc′ are pairwise distinct mod plp . As k
is invertible mod plp , there is exactly one rp in {0, . . . , plp −1} such that if a ≡plp rp,
then

n

⋀
i=1

(ka + hci /≡plp 0) ∧ (ka + hc′i′ ≡plp 0) and consequently ka + hc′i′ ∉ PZ
hm.

Now it follows by the Chinese remainder theorem that,

∣Ψh
M(hs, ht)∣ ≥ ⌊

ht − hs
D∏B<p≤M plp

⌋∏
p∈∆

(plp − n) .

Then it follows that,

∣Ψh
M(hs, ht)∣ ≥

ht − hs
D

∏
p≤pn′

1

plp

≤M

∏
p>pn′

(1 − n

plp
) − ∏

p≤M

plp .

Set

ε = 1

2D
∏

p≤pn′

1

plp
∏

p>pn′

(1 − n

plp
) .

Now as lp ≥ 2, for U ∈ N>0 with U >max{p′n, n2} we have that

∏
p>U

(1 − n

plp
) > ∏

p>U

(1 − 1

p
3
2

) .

Hence, it follows from Euler’s product formula that ε > 0. We now have

∣Ψh
M(hs, ht)∣ ≥ 2ε(ht − hs) − ∏

p≤M

plp .

We note that ε is independent of the choice of M and h, and will serve as the
promised ε in the statement of the lemma.

Next we obtain a upper bound on ∣Ψh
M(s, t) ∖ Ψh(s, t)∣ for M > pn′ h > 0 and

gcd(h,M !) = 1. We arrange that k > 0 by replacing c by −c and c′ by −c′ if necessary.
Note that an element a ∈ Ψh

M(s, t) ∖Ψh(s, t) must be such that

hks + hci < ka + hci < hkt + hci for all i ∈ {1, . . . , n}
and ka + hci is a multiple of plp for some p >M and i ∈ {1, . . . , n}. For each p and
i ∈ {1, . . . , n}, the number of non-zero multiples of plp in (hks + hci, hkt + hci) is

⌊hk(t − s)p−lp⌋ − 2, or ⌊hk(t − s)p−lp⌋ − 1, or ⌊hk(t − s)p−lp⌋, or ⌊hk(t − s)p−lp⌋ + 1.
In the last case, as lp ≥ 2 we moreover have

p2 ≤ ∣hks + hci∣ or p2 ≤ ∣hkt + hci∣,
and so

p ≤
√
∣hks + hci∣ +

√
∣hkt + hci∣.



12 NEER BHARDWAJ, MINH CHIEU TRAN

As lp ≥ 2, we have ⌊hk(t − s)p−lp⌋ ≤ hk(t − s)p−2. Therefore we have that

∣Ψh
M(s, t) ∖Ψh(s, t)∣ ≤ h(t − s) ∑

p>M

nk

p2
+ (

n

∑
i=1

√
∣hks + hci∣ +

√
∣hkt + hci∣) + 1.

We now obtain N and C as in the statement of the lemma. Note that

∑
p>T

p−2 ≤ ∑
n>T

n−2 = O(T −1).

Using this, we obtain N ∈ N>0 such that N > pn′ and ∑p>N knp−2 < ε where ε is

from the preceding paragraph. Set C = −∏p≤N plp − 1. Combining the estimations
from the preceding two paragraphs for M = N it is easy to see that ε,N,C are as
desired. □

Remark 2.12. The above weak lower bound is all we need for our purpose. We
expect that a stronger estimate can be obtained using modifications of available
techniques in the literature; see for example [12].

Corollary 2.13. For all c ∈ Z, there is a ∈ Z such that

a + c ∈ SFZ and a + c + 1 ∈ SFZ.

Proof. We have that for all c ∈ Z, ψ(x, c) = (x+c ∈ SFZ)∧(x+c+1 ∈ SFZ) is a locally
satisfiable Z-system. Applying Lemma 2.11 for h = 1, s = 0, and t sufficiently large
we see there is a solution a ∈ Z for ψ(x, c). □

We next prove the main theorem of the section:

Theorem 2.14. The Sf∗Z-model (Z;UZ,PZ), the Sf∗Q-model (Q;UQ,PQ), and the

OSf∗Q-model (Q;<,UQ,PQ) are generic.

Proof. We get the first part of the theorem by applying Lemma 2.11 for h = 1, s = 0,
and t sufficiently large. As the second part of the theorem follows easily from the
third part, it will be enough to show that the OSf∗Q-model (Q;<,UQ,PQ) is generic.
Throughout this proof, suppose ψ(x, z, z) is a special formula and ψ(x, c, c′) is a
Q-system which is nontrivial and locally satisfiable in Q. Our job is to show that
the Q-system ψ(x, c, c′) has a solution in the Q-interval (b, b′)Q for an arbitrary
choice of b, b′ ∈ Q such that b < b′.

We first reduce to the special case where ψ(x, c, c′) is also a Z-system which is
nontrivial and locally satisfiable in Z. Let B be the boundary of ψ(x, z, z′) and
for each p, let ψp(x, z, z′) be the associated p-condition of ψ(x, z, z′). Using the
assumption that ψ(x, c, c′) is locally satisfiable Q-system, for each p < B we obtain
ap ∈ Q such that ψp(ap, c, c′) holds. Let h > 0 be such that

hc ∈ Zn, hc′ ∈ Zn′ and hap ∈ Z for all p < B.
Then by the choice of h , Lemma 2.7, and Lemma 2.9, the h-conjugate ψh(x,hc, hc′)
of ψ(x, c, c′) is a Z-system which is nontrivial and locally satisfiable in Z. On the
other hand, ψ(x, c, c′) has a solution in a interval (b, b′)Q if and only if

ψh(x,hc, hc′) has a solution in (hb, hb′)Q.
Hence, by replacing ψ(x, z, z′) with ψh(x, z, z′), ψ(x, c, c′) with ψh(x,hc, hc′), and
(b, b′)Q with (hb, hb′)Q if necessary we get the desired reduction.

We show ψ(x, c, c′) has a solution in the Q-interval (b, b′)Q for the special case
in the preceding paragraph. By an argument similar to the preceding paragraph, it
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suffices to show that for some h ≠ 0, ψh(x,hc, hc′) has a solution in (hb, hb′)Q. Ap-
plying Lemma 2.11 for s = b, t = b′, and h sufficiently large satisfying the condition
of the lemma, we get the desired conclusion. □

3. Logical Tameness

We will next prove that SF∗Z, SF
∗
Q, and OSF∗Q admit quantifier elimination. We

first need a technical lemma saying that modulo Sf∗Z or Sf∗Q, an arbitrary quantifier
free formula ϕ(x, y) is not much more complicated than a special formula; recall
that x always denotes a single variable.

Lemma 3.1. Suppose φ(x, y) is a quantifier-free L∗u-formula. Then φ(x, y) is
equivalent modulo Sf∗Z to a disjunction of quantifier-free formulas of the form

ρ(y) ∧ ε(x, y) ∧ ψ(x, t(y), t′(y))
where

(i) t(y) and t′(y) are tuples of L∗u-terms with length n and n′respectively;
(ii) ρ(y) is a quantifier-free L∗u-formula, ε(x, y) an equational condition,

ψ(x, z, z′) a special formula.

The corresponding statement with Sf∗Z replaced by Sf∗Q also holds.

Proof. Let φ(x, y) be a quantifier-free L∗u-formula. We will use the following dis-
junction observation several times in our proof: If φ(x, y) is a finite disjunction of
quantifier-free L∗u-formulas and we have proven the desired statement for each of
those, then the desired statement for φ(x, y) follows. In particular, it allows us to
assume that φ(x, y) is the conjunction

ρ(y) ∧ ε(x, y) ∧⋀
p

ηp(x, y) ∧
n

⋀
i=1

(kix + ti(y) ∈ Pmi) ∧
n′

⋀
i=1

(k′ix + t′i(y) ∉ Pm′i
)

where ρ(y) is a quantifier-free L∗u-formula, ε(x, y) is an equational condition,
k1, . . . , kn and k′1, . . . , k

′
n′ are in Z ∖ {0}, m1, . . . ,mn and m′1, . . . ,m

′
n′ are in N≥1,

t1(y), . . . , tn(y) and t′1(y), . . . , t′n(y) are L∗u-terms with variables in y, ηp(x, y) is a
p-condition for each p, and ηp(x, y) is trivial for all but finitely many p.

We make further reductions to the form of φ(x, y). Set t(y) = (t1(y), . . . , tn(y))
and t′(y) = (t′1(y), . . . , t′n′(y)). Using the disjunction observation and the fact that

(x + yj ∈ P1) ∨ (x + yj ∉ P1)
is a tautology for every component yj of y, we can assume that either x+yj ∈ P1 or
x+ yj ∉ P1 are among the conjuncts of φ(x, y), and so yj is among the components
of t(y) or t′(y). Then we obtain for each prime p a p-condition θp(x, z, z′) such that
θp(x, t(y), t′(y)) is logically equivalent to ηp(x, y). Let ξ(x, z, z′) be the formula

⋀
p

θp(x, z, z′) ∧
n

⋀
i=1

(kix + zi ∈ Pmi) ∧
n′

⋀
i=1

(k′ix + z′i ∉ Pm′i
).

Clearly, φ(x, y) is equivalent to the formula ρ(y) ∧ ε(x, y) ∧ ξ(x, t(y), t′(y)), so we
can assume that φ(x, y) is the latter.

We need a small observation. For a p-condition θp(z) and h ≠ 0, we will show
that there is another p-condition ηp(z) such that modulo Sf∗Z and Sf∗Q,

ηp(z1, . . . , zi−1, hzi, zi+1, . . . , zn) is equivalent to θp(z).
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For the special case where θp(z) is t(z) ∈ Up,l, the conclusion follows from Lemma
2.1(iii), Lemma 2.5(iii) and the fact that there is an L∗u-term t′(z) such that
t′(z, . . . , zi−1, hzi, zi+1, . . . , zn) = ht(z). The statement of the paragraph follows eas-
ily from this special case.

With φ(x, y) as in the end of the second paragraph, we further reduce the main
statement to the special case where there is k ≠ 0 such that ki = k′i′ = k for all
i ∈ {1, . . . , n} and i′ ∈ {1, . . . , n′}. Choose k ≠ 0 to be a common multiple of
k1, . . . , kn and k′1, . . . k

′
n′ . Then by Lemma 2.1(vi) and Lemma 2.5(iii), we have for

each i ∈ {1, . . . , n} that
kix + zi ∈ Pmi is equivalent to (kx + kk−1i zi ∈ Pkk−1i mi

) modulo either Sf∗Z or Sf∗Q.

We have a similar observation for k and k′i′ with i′ ∈ {1, . . . , n′}. The desired
reduction easily follows from these observations and the preceding paragraph.

Continuing with the reduction in the preceding paragraph, we next arrange that
there is m > 0 such that mi = m′i′ = m for all i ∈ {1, . . . , n} and i′ ∈ {1, . . . , n′}. Let
m be a common multiple of m1, . . . ,mn and m′1, . . .m

′
n′ . By Lemma 2.1(v, vi) and

Lemma 2.5(iii), we have for i ∈ {1, . . . , n} that modulo either Sf∗Z or Sf∗Q

kx + zi ∈ Pmi is equivalent to kx + zi ∈ Pm ∧ ⋀
p∣ mmi

kx + zi ∉ Up,2+vp(mi)

and for i′ ∈ {1, . . . , n′} that modulo either Sf∗Z or Sf∗Q

kx + z′i′ ∉ Pm′
i′

is equivalent to kx + z′i′ ∉ Pm ∨ ⋁
p∣ m

m′
i′

kx + z′i′ ∈ Up,2+vp(m′i′)
.

It follows that φ(x, y) is equivalent to a disjunction of formulas of the form we
are aiming for. The desired conclusion of the lemma follows from the disjunction
observation. □

Corollary 3.2. Suppose φ(x, y) is a quantifier-free L∗ou formula. Then φ(x, y) is
equivalent modulo OSf∗Q to a disjunction of quantifier-free formulas of the form

ρ(y) ∧ λ(x, y) ∧ ψ(x, t(y), t′(y))
where

(i) t(y) and t′(y) are tuples of L∗ou-terms with length n and n′respectively;
(ii) ρ(y) is a quantifier-free L∗ou-formula, λ(x, y) an order condition, ψ(x, z, z′)

a special formula.

In the next lemma, we show a “local quantifier elimination” result.

Lemma 3.3. If φ(x, z) is a p-condition, then modulo either Sf∗Z or Sf∗Q, the formula
∃xφ(x, z) is equivalent to a p-condition ψ(z).

Proof. If φ(x, z) is a p-condition, then by Lemma 2.1 (i), modulo Sf∗Z, it is a boolean
combination of atomic formulas of the form kx + t(z) ∈ Up,l where t(z) is an L∗u-
term, and l > 0. Let lp be the largest value of l occurring in such atomic formulas,
and set

S = {(m1, . . . ,mn) ∶ 0 ≤mi < plp for each i, and (Z;UZ) ⊧ ∃xφ(x,m1, . . . ,mn)}.
Then by Lemma 2.1 (i), modulo Sf∗Z, ∃xφ(x, z) is equivalent to the p-condition

⋁(m1,...,mn)∈S(⋀n
i=1(zi ≡plp mi)) .
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Now, we proceed to prove the statement for models of Sf∗Q. Throughout the rest
of the proof, suppose φ(x, z) is a p-condition, k, k′, l, l′ are in Z, and t(z), t′(z)
are L∗u-terms. First, we consider the case where φ(x, z) is a p-condition of the form
kx + t(z) ∈ Up,l. The case k = 0 is trivial. If k ≠ 0, then ∃x(kx + t(z) ∈ Up,l) is
tautological modulo Sf∗Q following from (Q1) in the definition of Sf∗Q and Lemma
2.5(i).

We next consider the case where φ(x, z) is a finite conjunction of p-conditions in
L∗u(x, z) such that one of the conjuncts is kx + t(z) ∈ Up,l with k ≠ 0 and the other
conjuncts are either of the form k′x + t′(z) ∈ Up,l′ or of the form k′x + t′(z) ∉ Up,l′

where we do allow l′ to vary. It follows from Lemma 2.5(i) that if k = k′, l ≥ l′, then
k′x + t′(z) ∈ Up,l′ if and only if t(z) − t′(z) ∈ Up,l′ .

So we have means to replace conjuncts of φ(x, z) by terms independent of the
variable x. However, the above will not work if k ≠ k′ or l < l′. By Lemma 2.5(iii),
across models of Sf∗Q, we have that

kx + t(z) ∈ Up,l if and only if hkx + ht(z) ∈ Up,l+vp(h) for all h ≠ 0.
From this observation, it is easy to see that we can resolve the issue of having k ≠ k′,
and moreover arrange that l ≥ 0 which will be used in the next observation. By
Lemma 2.5(i,ii), across models of Sf∗Q, we have that

kx + t(z) ∈ Up,l if and only if
pm

⋁
i=1

kz + t(z) + ipl ∈ Up,l+m for all l ≥ 0 and all m.

Using the preceding two observations we resolve the issue of having l < l′. The
statement of the lemma for this case then follows from the second paragraph.

We now prove the full lemma. It suffices to consider the case where φ(x, z) is
a conjunction of atomic formulas. In view of the preceding paragraph, we reduce
further to the case where φ(x, z) is of the form

m

⋀
i=1

kx + ti(z) ∉ Up,li

We now show that ∃xφ(x, z) is a tautology over Sf∗Q and thus complete the proof.

Suppose (G;UG,PG) ⊧ Sf∗Q and c ∈ Gn. It suffices to find a ∈ G such that the

p-condition ka+ ti(c) ∉ UG
p,li

holds for all i ∈ {1, . . . ,m} . Without loss of generality,

we assume that t1(c), . . . , tm′(c) are not in UG
p,l for all l and that tm′+1(c), . . . , tm(c)

are in UG
p,l0

for some l0 such that l0 < li for all i ∈ {1, . . . ,m}. Using 2.5(ii), choose a

such that ka ∈ UG
p,l0−1

∖UG
p,l0

. It follows from Lemma 2.5(i) that a is as desired. □

Theorem 3.4. The theories SF∗Z, SF
∗
Q, and OSF∗Q admit quantifier elimination.

Proof. As the three situations are very similar, we will only present here the proof
that OSF∗Q admits quantifier elimination. The proof for SF∗Z and SF∗Q are simpler
as there is no ordering involved. Along the way we point out the necessary modifi-
cations needed to get the proof for SF∗Z and SF∗Q. Fix OSF∗Q-models (G;<,UG,PG)
and (H;<,UH ,PH) such that the latter is ∣G∣+-saturated. Suppose

f is a partial L∗ou-embedding from (G;<,UG,PG) to (H;<,UH ,PH),
in other words, f is an L∗ou-embedding of an L∗ou-substructure of (G;<,UG,PG)
into (H;<,UH ,PH). By a standard test, it suffices to show that if Domain(f) ≠ G,
then there is a partial L∗ou-embedding from (G;<,UG,PG) to (H;<,UH ,PH) which
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properly extends f . For the corresponding statements with SF∗Z or SF∗Q, we need

to consider instead (G;UG,PG) and (H;UH ,PH) depending on the situation.
We remind the reader that our choice of language includes a symbol for additive

inverse, and so Domain(f) is automatically a subgroup of G. Suppose Domain(f)
is not a pure subgroup of G, that is, there is an element Domain(f) which is n-
divisible in G but not n-divisible in Domain(f) for some n > 0. Then there is prime
p and a in G ∖Domain(f) such that pa ∈ Domain(f). Using divisibility of H, we
get b ∈H such that pb = f(pa). Let g be the extension of f given by

ka + a′ ↦ kb + f(a′) for k ∈ {1, . . . , p − 1} and a′ ∈ Domain(f).
It is routine to check that g is an ordered group isomorphism from ⟨Domain(f), a⟩
to ⟨Image(f), b⟩. It is also easy to check using Lemma 2.5(iii) that ka + a′ ∈ UG

p′,l if

and only if kb + f(a′) ∈ UG
p′,l and ka + a′ ∈ PG

m if and only if kb + f(a′) ∈ UG
m for all

k, l, m, primes p′, and a′ ∈ Domain(f). Hence,

g is a partial L∗ou-embedding from (G;<,UG,PG) to (H;<,UH ,PH).
Clearly, g properly extends f , so the desired conclusion follows. The proof for
SF∗Q is the same but without the verification that the ordering is preserved. The

situation for SF∗Z is slightly different as H is not divisible. However, for all primes
p′, p′a is in p′G = UG

p′,1, and so f(p′a) is in UH
p′,1 = p′H. The proof proceeds similarly

using 2.1(4-6).
The remaining case is when Domain(f) ≠ G is a pure subgroup of G. Let a be

in G ∖Domain(f). We need to find b in H ∖ Image(f) such that

qftpL∗ou(a/Domain(f)) = qftpL∗ou(b/Image(f)).
By the fact that Domain(f) is pure in G, and Corollary 3.2, qftpL∗ou(a ∣ Domain(f))
is isolated by formulas of the form

ρ(b) ∧ λ(x, b) ∧ ψ(x, t(b), t′(b))
where ρ(y) is a quantifier-free L∗ou-formula, λ(x, y) is an order condition, ψ(x, z, z′)
a special formula, t(y) and t′(y) are tuples of L∗ou-terms of suitable length, b is a
tuple of elements of Domain(f) of suitable length, and ψ(x, t(b), t′(b)) is a nontrival
Domain(f)-system. As Domain(f) is a pure subgroup of G, we can moreover
arrange that λ(x, b) is simply the formula b1 < x < b2. Since f is an L∗ou-embedding,
ρ(f(b)) holds, f(b1) < f(b2), and ψ(x, t(f(b)), t′(f(b))) is a nontrivial Image(f)-
system. Using the fact that (H;<,UH ,PH) is ∣G∣+-saturated, the problem reduces
to showing that

ψ(x, f(t(b)), f(t′(b))) has a solution in the interval (f(b1), f(b2))H .

As ψ(x, t(b), t′(b)) is satisfiable in G, it is locally satisfiable in G by Lemma 2.6.
For each p, let ψp(x, z, z′) be the associated p-condition of ψ(x, z, z′). By Lemma
3.3, for all p, the formula ∃xψp(x, z, z′) is equivalent modulo Sf∗Q to a quantifier free

formula in L∗u(z, z′). Hence, ∃xψp(x, f(t(b)), f(t′(b))) holds in (H;<,UH ,PH) for
all p. Thus,

the Image(f)-system ψ(x, f(t(b)), f(t′(b))) is locally satisfiable in H.

The desired conclusion follows from the genericity of (H;<,UH ,PH). The proofs
for SF∗Z and SF∗Q are similar. However, we have there the formula ⋀k

i=1 x ≠ bi with



THE GROUPS Z AND Q WITH PREDICATES FOR BEING SQUARE-FREE 17

k ≤ ∣b∣ instead of the formula b1 < x < b2, Lemma 3.1 instead of Corollary 3.2, and
the corresponding notion of genericity instead of the current one. □

Corollary 3.5. The theory SF∗Z is a recursive axiomatization of Th(Z;UZ,PZ), and
is therefore decidable. Similar statements hold for SF∗Q in relation to Th(Q;UQ,PQ)
and OSF∗Q in relation to Th(Q;< UQ,PQ).

Proof. By Lemma 2.1(ii), the subgroup generated by 1 in an arbitrary model
(G;UG,PG) of SF∗Z is an isomorphic copy of (Z;UZ,PZ). Hence by Theorem 3.4,
SF∗Z is complete, and on the other hand (Z;UZ,PZ) ⊧ SF∗Z by Theorem 2.14. The
first statement of the corollary follows. The justification of the second statement is
obtained in a similar fashion. □

Proof of Theorem 1.1, part 1. We show that the Lu-theory of (Z; SFZ) is model
complete and decidable. For all p, l ≥ 0, m > 0, and all a ∈ Z, we have the following:

(1) a ∈ UZ
p,l if and only there is b ∈ Z such that plb = a;

(2) a ∉ UZ
p,l if and only if for some i ∈ {1, . . . , pl − 1}, there is b ∈ Z such that

plb = a + i;
(3) a ∈ PZ

m if and only if for some d ∣ m, there is b ∈ Z such that a = bd and

b ∈ SFZ;
(4) a ∉ PZ

m if and only if for all d ∣m, either for some i ∈ {1, . . . , d − 1}, there is

b ∈ Z such that db = a + i or there is b ∈ Z such that a = bd and b ∉ SFZ.

As (Z;UZ,PZ) ⊧ SF∗Z, it then follows from Theorem 3.4 and the above observation

that every 0-definable set in (Z,SFZ) is existentially 0-definable. Hence, the theory

of (Z; SFZ) is model complete. The decidability of Th(Z; SFZ) is immediate from
the preceding corollary. □

Lemma 3.6. Suppose a ∈ Q has vp(a) < 0. Then there is ε ∈ Q such that vp(ε) ≥ 0
and a + ε ∈ SFQ.

Proof. Suppose a is as stated. If a ∈ SFQ we can choose ε = 0, so suppose a is in
Q ∖ SFQ. We can also arrange that a > 0. Then there are m,n, k ∈ N≥1 such that

a = m

npk
, (m,n) = 1, (m,p) = 1, and (n, p) = 1.

It suffices to show there is b ∈ Z such that m + pkb is a square-free integer as then

a + b
n
= m + p

kb

npk
∈ SFQ.

For all prime l, pkbl +m ∉ UQ
l,2 for bl = 0 or 1. The conclusion then follows from the

genericity of (Z;UZ,PZ) as established in Theorem 2.14. □

Corollary 3.7. For all p and l, UQ
p,l is universally 0-definable in (Q,SFQ).

Proof. We will instead show that Q∖UQ
p,l = {a ∶ vp(a) < l} is existentially 0-definable

for all p and l. As Q ∖ UQ
p,l+n = pn(Q ∖ U

Q
p,l) for all p, l, and n, it suffices to show

the statement for l = 0. Fix a prime p. By the preceding lemma we have that for
all a, vp(a) < 0 if and only if

there is ε such that vp(ε) ≥ 0, a + ε ∈ SFQ and vp(a + ε) < 0.
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We recall that {ε ∶ vp(ε) ≥ 0} is existentially 0-definable by Lemma 2.3. Also, for

all a′ ∈ SFQ, we have that vp(a′) < 0 is equivalent to p2a′ ∈ SFQ. The conclusion
hence follows. □

Proof of Theorem 1.3 and 1.4, part 1. We show that the Lu-theory of (Q; SFQ) and
the Lou-theory of (Q;<,SFQ) are model complete and decidable. The proof is
almost exactly the same as that of part 1 of Theorem 1.1. It follows from Lemma 2.3
and Corollary 3.7 that for all p and l, the sets UQ

p,l are existentially and universally

0-definable in (Q; SFQ). For all m, PQ
m = mSFQ and Q ∖ PQ

m = m(Q ∖ SFQ) are
clearly existentially 0-definable. The conclusion follows. □

Next, we will show that the Lou-theory of (Z;<,SFZ) is bi-interpretable with arith-
metic. The proof follow closely the arguments from [2]. In fact, we can slightly
modify Corollary 3.9 to use essentially the same proof at the cost of replacing n2

with n2 + n.
Lemma 3.8. Let c1, . . . , cn be an increasing sequence of natural numbers, assume
that for all primes p, there is a solution to the system of congruence inequations

x + ci ∉ UZ
p,2 for all i ∈ {1, . . . , n}.

Then there is a ∈ N such that a + c1, . . . , a + cn are consecutive square-free integers.

Proof. Suppose c1, . . . , cn are as given. Let c′1, . . . , c
′
n′ be the listing in increasing

order of elements in the set of c ∈ N such that c1 ≤ c ≤ cn and c ≠ ci for i ∈ {1, . . . , n}.
The conclusion that there are infinitely many a such that

n

⋀
i=1

(a + ci ∈ SFZ) ∧
n′

⋀
i=1

(a + c′i ∉ SFZ)

follows from the assumptions about c1, . . . , cn and the genericity of (Z;UZ,PZ) as
established in Theorem 2.14. □

Corollary 3.9. For all n ∈ N>0, there is a ∈ N such that a + 1, a + 4, . . . , a + n2 are
consecutive square-free integers .

Proof. For each p, we can obtain a ∈ {1,2, . . . , p2 − 1} such that

a ≢p2 −m2 for all m.

Hence, for any given n > 0 and p, the p-condition ⋀n
i=1(x+ i2 ∉ UZ

p,2) has a solution.
The result now follows immediately from the preceding lemma. □

Proof of Theorem 1.2. It suffices to show that (Z;<,SFZ) interprets multiplication
on N. Let T be the set of (a, b) ∈ N2 such that for some n ∈ N≥1,

b = a + n2 and a + 1, a + 4, . . . , a + n2 are consecutive square-free integers.

The set T is definable in (Z;<,SFZ) as (a, b) ∈ T and b ≠ a+1 if and only if a+4 ≤ b,
a + 1 and a + 4 are consecutive square-free integers, b is square-free, and whenever
c, d, and e are consecutive square-free integers with a < c < d < e ≤ b, we have that

(e − d) − (d − c) = 2.
Let S be the set {n2 ∶ n ∈ N}. If c = 0 or there are a, b such that (a, b) ∈ T and
b − a = c, then c = n2 for some n. Conversely, if c = n2, then either c = 0 or by
Corollary 3.9,

there is (a, b) ∈ T with b − a = c.
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Therefore, S is definable in (Z;<,SFZ). The map n ↦ n2 in N is definable in

(Z;<,SFZ) as b = a2 if and only if b ∈ S and whenever c ∈ S is such that c > b and
b, c are consecutive in S, we have that c − b = 2a + 1. Finally, c = ba if and only if
2c = (b + a)2 − b2 − a2. Thus, multiplication on N is definable in (Z;<,SFZ). □

4. Combinatorial Tameness

As the theories SF∗Z, SF
∗
Q, and OSF∗Q are complete, it is convenient to work in the so-

called monster models, that is, models which are very saturated and homogeneous.
Until the end of the paper, let (G;UG,PG) be a monster model of either SF∗Z or
SF∗Q depending on the situation. In the latter case, we suppose (G;<,UG,PG) is
a monster model of OSF∗Q. We assume that κ,A and I have small cardinalities
compared to G.

Our general strategy to prove the tameness of SF∗Z, SF
∗
Q, and OSF∗Q is to link them

to the corresponding “local” facts. The next lemma says that SF∗Z is “locally”
supersimple of U-rank 1.

Lemma 4.1. Suppose (G;UG,PG) ⊧ SF∗Z, θp(x, y) is a consistent p-condition, and

b is in G∣y∣. Then θp(x, b) does not divide over any base set A ⊆ G.

Proof. Recall that every every p-condition is equivalent modulo SF∗Z to a formula in
the language L of groups, and the reduct of SF∗Z to L is simply Th(Z). Hence, the
desired conclusion is an immediate consequence of the well-known fact that Th(Z)
is superstable of U -rank 1; see for example [3]. □

Proof of Theorem 1.1, part 2. We first show that Th(Z; SFZ) is supersimple of U-
rank 1; see [10, p. 36] for a definition of U-rank or SU-rank. By the fact that

(Z; SFZ) has the same definable sets as (Z;UZ,PZ) and Corollary 3.5, we can replace

Th(Z; SFZ) with SF∗Z. Suppose (G;UG,PG) ⊧ SF∗Z. Our job is to show that every
L∗u(G)-formula φ(x, b) which forks over a small subset A of G must define a finite
set in G. We can easily reduce to the case that φ(x, b) divides over A. Moreover,
we can assume that φ(x, b) is quantifier free by Theorem 3.4 which states that
(G;UG,PG) admits quantifier elimination. Using Lemma 3.1, we can also arrange
that φ(x, b) has the form

ρ(b) ∧ ε(x, b) ∧ ψ(x, t(b), t′(b))

where ρ(y) is a quantifier-free formula, ε(x, y) is an equational condition, t(y) and
t′(y) are tuples of L∗u-terms with length n and n′ respectively, and ψ(x, z, z′) is a
special formula.

Suppose to the contrary that φ(x, b) divides over A but φ(x, b) defines an infinite
set inG. From the first assumption, we get an infinite ordering I and a family (σi)i∈I
of L∗u-automorphisms of (G;UG,PG) such that (σi(b))i∈I is indiscernible over A and

⋀i∈I φ(x,σi(b)) is inconsistent. As φ(x, b) defines an infinite set in G, we get from
the second assumption that ρ(b) holds in G, ε(x, b) defines a cofinite set in G,
and ψ(x, t(b), t′(b)) defines an infinite hence non-empty set in G. As (σi(b))i∈I is
indiscernible, we have that ρ(σi(b)) holds in G and ε(x,σi(b)) defines a cofinite set
in G for all i ∈ I. Using the saturation of G, we get a finite set ∆ ⊆ I such that

θ∆(x) ∶= ⋀
i∈∆

ψ(x, t(σi(b)), t′(σi(b))) defines a finite set in G.
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As θ∆(x) is a conjunction of G-systems given by the same special formula, it is
easy to see that θ∆(x) is also a G-system.

We will show that θ∆(x) defines an infinite set and thus obtain the desired
contradiction. As (G;UG,PG) is a model of SF∗Z and hence generic, it suffices to
show that θ∆(x) is non-trivial and locally satisfiable. As φ(x, b) is consistent,
t(b) has no common components with t′(b). The assumption that (σi(b))i∈I is
indiscernible gives us that t(σi(b)) has no common components with t′(σj(b)) for
all i and j in I. It follows that θ∆(x) is non-trivial. For each p, let ψp(x, z, z′) be
the associated p-condition of ψ(x, z, z′). For all p, we have that ψp(x, t(b), t(b′))
defines a nonempty set and consequently by Lemma 4.1,

⋀
i∈∆

ψp(x, t(σi(b)), t′(σi(b))) defines a nonempty set in G.

We easily check that the above means θ∆(x) is p-satisfiable for all p. Thus θ∆(x)
is locally satisfiable which completes our proof that Th(Z,SFZ) has U-rank 1.

We will next prove that Th(Z,SFZ) is k-independent for all k > 0; see [5] for
a definition of k-independence. The proof is almost the exact replica of the proof
in [9] except the necessary modifications taken in the current paragraph. Suppose
l > 0, S is an arbitrary subset of {0, . . . , l − 1}. Our first step is to show that there
are a, d ∈ N such that for t ∈ {0, . . . , l − 1},

a + td is square-free if and only if t is in S.

Let n = ∣S∣ and n′ = l − n, and let c ∈ Zn be the increasing listing of elements in S

and c′ ∈ Zn′ the increasing listing of elements in {0, . . . , l − 1}∖S. Choose d = (l!)2.
We need to find a such that

n

⋀
i=1

(a + cid ∈ SFZ) ∧
n′

⋀
i=1

(a + c′id ∉ SFZ).

For p ≤ l, if ap ∉ p2Z = UZ
p,2, then ap + cid ∉ p2Z for all i ∈ {1, . . . , n}. For p > l, it is

easy to see that 0 + cid ∉ p2Z for all i ∈ {1, . . . , n}. The desired conclusion follows
from the genericity of (Z;UZ,PZ).

Fix k > 0. We construct an explicit Lu-formula which witnesses the k-
independence of Th(Z,SFZ). Let y = (y0, . . . , yk−1) and let φ(x, y) be a quantifier-
free L∗u-formula such that for all a ∈ Z and b ∈ Zk,

φ(a, b) if and only if a + b0 +⋯ + bk−1 ∈ SFZ where b = (b0, . . . , bk−1).
We will show that for any given n > 0, there are families (a∆)∆⊆{0,...,n−1}k and
(bij)0≤i<k,0≤j<n of integers such that

φ(a∆, b0,j0 , . . . , bk−1,jk−1) if and only if (j0, . . . , jk−1) ∈∆.

Let f ∶ P({0, . . . , n − 1}k) → {0, . . . ,2(nk
) − 1} be an arbitrary bijection. Let g be

the bijection from {0, . . . , n − 1}k to {0, . . . , nk − 1} such that if b and b′ are in
{0, . . . , n − 1}k and b <lex b′, then g(b) < g(b′). More explicitly, we have

g(j0, . . . , jk−1) = j0nk−1 + j1nk−2 +⋯ + jk−1 for (j0, . . . , jk−1) ∈ {0, . . . , n − 1}k.
It follows from the preceding paragraph that we can find an arithmetic progres-
sion (ci)i∈{0,...,nk2(nk

)−1}
such that for all ∆ ⊆ {0, . . . , n − 1}k and (j0, . . . , jk−1) in

{0, . . . , n − 1}k, we have that

cf(∆)nk+g(j0,...,jk−1) ∈ SF
Z if and only if (j0, . . . , jk−1) ∈∆.
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Suppose d = c1 − c0. Set bij = djnk−i−1 for i ∈ {0, . . . , k − 1} and j ∈ {0, . . . , n − 1},
and set a∆ = cf(∆)nk for ∆ ⊆ {0, . . . , n − 1}k. We have

cf(∆)nk+g(j0,...,jk−1) = cf(∆)nk + dg(j0, . . . , jk−1) = a∆ + b0,j0 +⋯ + bk−1,jk−1 .

The conclusion thus follows. □

Lemma 4.2. Every p-condition θp(x, y) is stable in SF∗Q.

Proof. Suppose θp(x, y) is as in the statement of the lemma. It is clear that if
θp(x, y) does not contain the variable x, then it is stable. As stability is preserved
under taking boolean combinations, we can reduce to the case where θp(x, y) is

kx+ t(y) ∈ Up,l with k ≠ 0. We note that for any b and b′ in G∣y∣, the sets defined by
θp(x, b) and θp(x, b′) are either the same or disjoint. It follows easily that θp(x, y)
does not have the order property; in other words, θp(x, y) is stable. Alternatively,

the desired conclusion also follows from the fact that (Q;UQ) is an abelian structure
and hence stable; see [15, p. 49] for the relevant definition and result. □

Proof of Theorem 1.3, part 2. We first show that Th(Q; SFQ) is simple. By the

fact that (Q; SFQ) has the same definable sets as (Q;UQ,PQ) and Corollary 3.5, we

can replace Th(Q; SFQ) with SF∗Q. Towards a contradiction, suppose that the latter

is not simple. We obtain a formula φ(x, y) witnessing the tree property of SF∗Q;
see [10, pp. 24-25] for the definition and proof that this is one of the equivalent
characterizations of simplicity. We can arrange that φ(x, y) is quantifier-free by
Theorem 3.4. Recall that disjunction preserves simplicity of formulas; this can
be shown directly as an exercise or can be seen immediately from the equivalence
between (1) and (3) in [10, Lemma 2.4.1]. Hence using Lemma 3.1, we can arrange
that φ(x, y) is of the form

ρ(y) ∧ ε(x, y) ∧ ψ(x, t(y), t′(y))

where ρ(y) is a quantifier-free L∗u-formula, ε(x, y) is an equational condition, t(y)
and t′(y) are tuples of L∗u-terms with lengths n and n′ respectively, and ψ(x, z, z′)
is a special formula. Let (G;UG,PG) ⊧ SF∗Q. Then there is b ∈ Gk with k = ∣y∣, an
uncountable cardinal κ, and a tree (σs)s∈ω<κ of L∗u-automorphisms of (G;UG,PG)
with the following properties:

(1) for all s ∈ ω<κ, {φ(x,σs⌢(i)(b)) ∶ i ∈ ω} is inconsistent;
(2) for all ŝ ∈ ωκ, {φ(x,σŝ↾α(b)) ∶ α < κ} is consistent;
(3) for every α < κ and s, s′ ∈ ωα, tp((σs⌢(i)(b))i) = tp((σs′⌢(i)(b))i).

More precisely, we can get b, κ, and (σt)t∈ω<κ satisfying (1) and (2) from the fact
that φ(x, y) witnesses the tree property of SF∗Q, a standard Ramsey arguments,

and the monstrosity of (G;UG,PG). We can then arrange that (3) also holds using
results in [11]; a direct argument is also straightforward.

We deduce the desired contradiction by showing that there is s ∈ ω<κ such that
{φ(x,σs⌢(i)(b)) ∶ i ∈ ω} is consistent. From (1-3), we get for all s ∈ ω<κ that ρ(σs(b))
holds and ε(x,σs(b)) defines a cofinite set. By montrosity of G, it suffices to find
s ∈ ω<κ such that any finite conjunction of {ψ(x, t(σs⌢(i)(b)), t′(σs⌢(i)(b))) ∶ i ∈ ω}
defines an infinite set in G. For s ∈ ω<κ and a finite ∆ ⊆ ω, set

θs,∆(x) ∶= ⋀
i∈∆

ψ(x, t(σs⌢(i)(b)), t′(σs⌢(i)(b))).
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As κ is uncountable, to ensure the desired s ∈ ω<κ exists, it suffices to show for
fixed ∆ that for all but countably many α < κ and all s ∈ ωα, the formula θs,∆(x)
defines an infinite set in G.

Note that θs,∆(x) is a conjunction of G-systems given by the same special for-
mula, so θs,∆(x) is also a G-system. By the genericity of SF∗Q established in The-
orem 2.14, we need to check that for all but countably many α < κ and all s ∈ ωα,
the G-system θs,∆(x) is nontrivial and locally satisfiable. Indeed, this implies that
By (2), φ(x, b) is consistent, and so is ψ(x, t(b), t′(b)). This implies in particular
that t(b) and t′(b) have no common components. It then follows from (3) that for
s ∈ ω<κ and i, j ∈ ω,

t(σs⌢(i)(b)) and t′(σs⌢(j)(b)) have no common elements .

Hence, θs,∆(x) is nontrivial for all s ∈ ω<κ. Let ψp(x, z, z′) be the associated p-
condition of ψ(x, z, z′). We then get from (2) that {ψp(x, t(σŝ↾α(b)), t′(σŝ↾α(b))) ∶
α < κ} is consistent for all ŝ ∈ ωκ. By Lemma 4.2, the formula ψp(x, t(y), t′(y))
is stable and hence does not witness the tree property. It follows that for all but
finitely many α < κ and all s ∈ ωα, the set

{ψp(x, t(σs⌢(i)(b)), t′(σs⌢(i)(b))) ∶ i ∈ ω} is consistent.
For such s, we have that θs,∆(x) is p-satisfiable. So for all but countably many
α < κ and all s ∈ ωα, θs,∆(x) is locally satisfiable which completes the proof that

Th(Q; SFQ) is simple.

We next prove that Th(Q; SFQ) is not strong which implies that it is not su-
persimple; for the definition of strength and the relation to supersimplicity see [1].

Again, we can replace Th(Q; SFQ) by SF∗Q using Proposition 2.4 and Corollary 3.5.
For each p, let φp(x, y) with ∣y∣ = 1 be the formula x − y ∈ Up,0. For all p and i, set

bp,i = p−i. We will show that (φp(x, y), (bp,i)i∈N)) forms an inp-pattern of infinite

depth in (Q;UQ,PQ). For distinct i and j in N, we have that p−i − p−j ∉ UQ
p,0 which

implies that φp(x, bp,i) ∧ φp(x, bp,j) is inconsistent. On the other hand, if S is a
finite set of primes, and f ∶ S → N is an arbitrary function, then for a = Σp∈Sbp,f(p)
we have that (Q;UQ,PQ) ⊧ ⋀p∈S φp(a, bp,f(p)). The desired conclusion follows.

Finally, we note that (Z;UZ,PZ) is a substructure of (Q;UQ,PQ), the former
theory admits quantifier elimination and has IPk for all k > 0. Therefore, the latter
also has IPk for all k > 0. In fact, the construction in part 2 of the proof of Theorem
1.1 carries through. □

Lemma 4.3. Any order-condition has NIP in OSF∗Q.

Proof. The statement immediately follows from the fact that every order condition
is a formula in the language of ordered groups and the fact that the reduct of any
model of OSF∗Q to this language is an ordered abelian group, which has NIP; see
for example [8]. □

Proof of Theorem 1.4, part 2. In the proof of part 2 of Theorem 1.3, we have shown
that Th(Q; SFQ) is not strong and is k-independent for all k > 0, so the correspond-

ing conclusions for Th(Q;<,SFQ) also follow. It remains to show that Th(Q;<,SFQ)
has NTP2. The proof is essentially the same as the proof that Th(Q; SFQ) is simple,
but with extra complications coming from the ordering. By Proposition 2.4 and
Corollary 3.5, we can replace Th(Q;<,SFQ) with OSF∗Q. Towards a contradiction,
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assume that there is a formula φ(x, y) witnessing TP2 (see [4, pp. 700-701]). We
can arrange that φ(x, y) is quantifier-free by Theorem 3.4. Disjunctions of formulas
with NTP2 again have NTP2[4, p. 701], so using Lemma 3.2 we can arrange that
φ(x, y) is of the form

ρ(y) ∧ λ(x, y) ∧ ψ(x, t(y), t′(y))
where ρ(y) is a quantifier-free L∗ou-formula, λ(x, y) an order condition, ψ(x, z, z′)
a special formula, and t(y) and t′(y) are tuples of L∗ou-terms with length n and
n′ respectively. Then there is b ∈ Gk with k = ∣y∣ and an array (σij)i∈ω,j∈ω of

L∗ou-automorphisms of (G;<,UG,PG) with the following properties:

(1) for all i ∈ ω, {φ(x,σij(b)) ∶ j ∈ ω} is inconsistent;
(2) for all f ∶ ω → ω, {φ(x,σif(i)(b)) ∶ i ∈ ω} is consistent;
(3) for all i ∈ ω, (σij(b))j∈ω is indiscernible over {σi′j(b) ∶ i′ ∈ ω, i′ ≠ i, j ∈ ω};
(4) the sequence of “rows” ((σij(b))j∈ω)i∈ω is indiscernible.

We could get b, ω, and (σij)i∈ω,j∈ω as above from the definition of NTP2, Ramsey

arguments, and the monstrosity of (G;UG,PG); see also [4, p. 697] for the type of
argument we need to get (3).

We deduce that the set {φ(x,σijb) ∶ j ∈ ω} is consistent for all i ∈ ω, which is the
desired contradiction. We get from (2) that ρ(σijb) holds for all i ∈ ω and j ∈ ω.
Hence, it suffices to show for all i ∈ ω that

{λ(x,σijb) ∧ ψ(x, t(σijb), t′(σijb)) ∶ j ∈ ω} is consistent.
The order condition λ(x, y) has NIP by Lemma 4.3, and so it has NTP2. Using
conditions (2-4), we get that

{λ(x,σij(b)) ∶ j ∈ ω} is consistent for all i ∈ ω.
Hence, any finite conjunction from {λ(x,σij(b)) ∶ j ∈ ω} contains an open interval
for all i ∈ ω. For i ∈ ω and a finite ∆ ⊆ ω, set

θi,∆(x) ∶= ⋀
j∈∆

ψ(x, t(σij(b)), t′(σij(b))).

It suffices to show that θi,∆(x) defines a non-empty set in every non-empty G-
interval.

We have that θi,∆(x) is a conjunction of G-system given by the same special
formula, and so is again a G-system. By the genericity of OSF∗Q, the problem
reduces to showing θi,∆(x) is nontrivial and locally satisfiable. By (2), φ(x, b) is
consistent, and so is ψ(x, t(b), t′(b)). This implies in particular that t(b) and t′(b)
have no common components. It then follows from (3) that for i ∈ ω and distinct
j, j′ ∈ ω,

t(σij(b)) and t′(σij′(b)) have no common elements.

Hence, θi,∆(x) is nontrivial for all i ∈ ω. Let ψp(x, z, z′) be the associated p-
condition of ψ(x, z, z′). We then get from (2) that {ψp(x,σif(i)(b)) ∶ i ∈ ω} is
consistent for all f ∶ ω → ω. By Lemma 4.2, the formula ψp(x, t(y), t′(y)) is stable
and hence has NTP2. It follows that for all but finitely many i ∈ ω the set

{ψp(x, t(σij(b)), t′(σij(b))) ∶ j ∈ ω} is consistent.
Combining with (4), we get that θi,∆(x) is p-satisfiable for all p which completes
the proof. □

Corollary 4.4. The set Z is not definable in (Q;<,SFQ).
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Proof. Towards a contradiction, suppose Z is definable in (Q;<,SFQ). Then by

Theorem 1.2, (N;+,×,<,0,1) is interpretable in (Q;<,SFQ). It then follows from
Theorem 1.4 that (N;+,×,<,0,1) has NTP2, but this is well-known to be false. □

5. Further questions

There are several further questions we can ask about (Z; SFZ), (Q; SFQ), and

(Q;<,SFQ). We would like to better understand dividing and forking inside these
structures. Ideally, they coincide and have appropriate “local to global” behav-
iors. It would also be nice to understand imaginaries and definable groups in these
structures.

One would like to have similar results for “sufficiently random” subsets of
Z other than Pr and SFZ. Another interesting candidate of such a subset is
{±pq ∶ p, q are primes}. Most likely, it is not possible to prove the analogous results
without assuming any number-theoretic conjecture. In a rather different direction,
is there any sense in which we can say that most subsets of Z are “sufficiently
random” and yield results similar to ours?

In [2], it is shown under the assumption of Dickson’s Conjecture, that the
monadic second order theory of (N;S,Pr) is decidable where S is the successor

function. We hope the analogous result for (N;S,SFZ) can be shown without as-
suming any conjecture. On another note, suppose the field Q̄ is an algebraic closure
of the field Q, v range over the non-archimedian valuations of Q̄, and

SqfQ̄ = {a ∈ Q̄ ∶ v(a) < 2 for all v}.

Does (Q̄; SqfQ̄) have NTP2? Finally, if Z× is the multiplicative monoid of integers,

can anything be said about (Z×; SFZ)?
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